0000000000342302

AUTHOR

Lucrezia Colonna

showing 2 related works from this author

A Specialized Vascular Niche for Adult Neural Stem Cells

2008

SummaryStem cells reside in specialized niches that regulate their self-renewal and differentiation. The vasculature is emerging as an important component of stem cell niches. Here, we show that the adult subventricular zone (SVZ) neural stem cell niche contains an extensive planar vascular plexus that has specialized properties. Dividing stem cells and their transit-amplifying progeny are tightly apposed to SVZ blood vessels both during homeostasis and regeneration. They frequently contact the vasculature at sites that lack astrocyte endfeet and pericyte coverage, a modification of the blood-brain barrier unique to the SVZ. Moreover, regeneration often occurs at these sites. Finally, we fi…

0303 health sciencesCellular differentiationRegeneration (biology)animal diseasesSubventricular zoneCell BiologyBiologySTEMCELLArticleNeural stem cellCell biologyEndothelial stem cell03 medical and health sciences0302 clinical medicinemedicine.anatomical_structurenervous systemImmunologymedicineGeneticsMolecular MedicineStem cell030217 neurology & neurosurgery030304 developmental biologyAdult stem cellAstrocyteCell Stem Cell
researchProduct

Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells

2004

Hematopoietic (Hem) and endothelial (End) lineages derive from a common progenitor cell, the hemangioblast: specifically, the human cord blood (CB) CD34+KDR+ cell fraction comprises primitive Hem and End cells, as well as hemangioblasts. In humans, the potential therapeutic role of Hem and End progenitors in ischemic heart disease is subject to intense investigation. Particularly, the contribution of these cells to angiogenesis and cardiomyogenesis in myocardial ischemia is not well established. In our studies, we induced myocardial infarct (MI) in the immunocompromised NOD-SCID mouse model, and monitored the effects of myocardial transplantation of human CB CD34+ cells on cardiac function.…

Vascular Endothelial Growth Factor AneoangiogenesisTime FactorsAngiogenesisCell TransplantationHeart VentriclesCD34Myocardial InfarctionAntigens CD34ApoptosisMice SCIDBiologySCIDPeripheral blood mononuclear cellBiochemistryCulture Media Serum-FreeSerum-FreeCell FusionMiceVasculogenesisMice Inbred NODparasitic diseasesGeneticsAnimalsHumansVentricular Functionendothelial precursorsCell LineageProgenitor cellAntigensMolecular Biologyneoangiogenesis endothelial precursors hematopoietic stem cellsHemodynamicsFetal BloodVascular Endothelial Growth Factor Receptor-2Coculture Techniqueshematopoietic stem cellsCulture MediaTransplantationAutocrine CommunicationCord bloodImmunologycardiovascular systemCancer researchHemangioblastInbred NODCD34neoangiogenesis; endothelial precursors; hematopoietic stem cells; Animals; Antigens CD34; Apoptosis; Autocrine Communication; Cell Fusion; Cell Lineage; Coculture Techniques; Culture Media Serum-Free; Fetal Blood; Heart Ventricles; Hemodynamics; Humans; Mice; Mice Inbred NOD; Mice SCID; Myocardial Infarction; Time Factors; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2; Ventricular Function; Cell Transplantation; Biotechnology; Biochemistry; Molecular Biology; GeneticsBiotechnology
researchProduct