Eurofusion-DEMO Divertor - Cassette Design and Integration
International audience; The Eurofusion-DEMO design will complete the Pre Conceptual Design phase (PCD) with a PCD Gate, named G1, scheduled to take place in Q4 2020 that will focus on assessing the feasibility of the plant and its main components prior to entering into the Conceptual Design phase. In the paper first an overview is given of the Eurofusion-DEMO Divertor Assembly including design and interface description, systems and functional requirements, load specification, system classification, manufacturing procedures and cost estimate. Then critical issues are discussed and potential design solutions are proposed, e.g.:- Neutron material damage limits of the different (structural) mat…
Parametric study of the influence of First Wall cooling water on the Water Cooled Lithium Lead Breeding Blanket nuclear response
Abstract In the framework of EUROfusion Work Package International Cooperation R&D activities, a close collaboration has been started among University of Palermo, ENEA Brasimone and ENEA Frascati for the development of the Water Cooled Lithium Lead (WCLL) Breeding Blanket (BB) concept. In this context, a research campaign has been carried out at the University of Palermo in order to investigate the influence of First Wall (FW) cooling water configuration on the nuclear response of the WCLL BB under irradiation in EU-DEMO, in order to gain useful indications for the WCLL BB pre-conceptual designs. To this end, three-dimensional nuclear analyses have been performed by MCNP5 v. 1.6 Monte Carlo…
Progress in the initial design activities for the European DEMO divertor: Subproject "Cassette"
Abstract Since 2014 preconceptual design activities for European DEMO divertor have been conducted as an integrated, interdisciplinary R&D effort in the framework of EUROfusion Consortium. Consisting of two subproject areas, ‘Cassette’ and ‘Target’, this divertor project has the objective to deliver a holistic preconceptual design concept together with the key technological solutions to materialize the design. In this paper, a brief overview on the recent results from the subproject ‘Cassette’ is presented. In this subproject, the overall cassette system is engineered based on the load analysis and specification. The preliminary studies covered multi-physical analyses of neutronic, thermal,…
Recent progress in developing a feasible and integrated conceptual design of the WCLL BB in EUROfusion project
The water-cooled lithium-lead breeding blanket is in the pre-conceptual design phase. It is a candidate option for European DEMO nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium-lead as breeder-multiplier, pressurized water as coolant and EUROFER as structural material. Current design is based on DEMO 2017 specifications. Two separate water systems are in charge of cooling the first wall and the breeding zone: thermo-dynamic cycle is 295–328 °C at 15.5 MPa. The breeder enters and exits from the breeding zone at 330 °C. Cornerstones of the design are the single module segment approach and the water manifold between the breeding blanket box and the back suppo…
Nuclear performances of the water-cooled lithium lead DEMO reactor: Neutronic analysis on a fully heterogeneous model
Abstract The development of a conceptual design for the Demonstration Fusion Power Reactor (DEMO) is a key issue within the EUROfusion roadmap. The DEMO reactor is designed to produce a fusion power of about 2 GW and generate a substantial amount of electricity, relying on a closed tritium fuel cycle: it implies that the breeding blanket (BB) shall guarantee a suitable tritium production to enable a continuous operation without any external supply. The Water-Cooled Lithium Lead (WCLL) concept is a candidate for the DEMO BB: it uses liquid Lithium Lead as breeder and neutron multiplier and water in PWR condition as coolant. The neutronics analyses carried out in the past have been performed …
Status of ITER TBM port plug conceptual design and analyses
The test blanket module port plug (TBM PP) consists of a TBM frame and two TBM-sets. However, at any time of the ITER operation, a TBM set can be replaced by a dummy TBM. The frame provides a standardized interface with the vacuum vessel (VV)/port structure and provides thermal isolation from the shield blanket. As one of the plasma-facing components, it shall withstand heat loads while at the same time provide adequate neutron shielding for the VV and magnet coils. The frame design shall provide a stable engineering solution to hold TBM-sets and also provide a mean for rapid remote handling replacement and refurbishment. This paper presents main design features of the conceptual design of …
Advancements in DEMO WCLL breeding blanket design and integration
Summary The water-cooled lithium–lead breeding blanket is a candidate option for the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This breeding blanket concept relies on the liquid lithium–lead as breeder–multiplier, pressurized water as coolant, and EUROFER as structural material. The current design is based on DEMO 2015 specifications and represents the follow-up of the design developed in 2015. The single-module-segment approach is employed. This is constituted by a basic geometry repeated along the poloidal direction. The power is removed by means of radial–toroidal (i.e., horizontal) water cooling tubes in the breeding zone. The lithium–lead flows in a radial–poloi…
WCLL breeding blanket design and integration for DEMO 2015: status and perspectives
Abstract Water-cooled lithium-lead breeding blanket is considered a candidate option for European DEMO nuclear fusion reactor. ENEA and the linked third parties have proposed and are developing a multi-module blanket segment concept based on DEMO 2015 specifications. The layout of the module is based on horizontal (i.e. radial-toroidal) water-cooling tubes in the breeding zone, and on lithium lead flowing in radial-poloidal direction. This design choice is driven by the rationale to have a modular design, where a basic geometry is repeated along the poloidal direction. The modules are connected with a back supporting structure, designed to withstand thermal and mechanical loads due to norma…
Recent Progress in the WCLL Breeding Blanket Design for the DEMO Fusion Reactor
The water-cooled lithium-lead (PbLi) breeding blanket is one of the candidate systems considered for the implementation in the European Demonstration Power Plant (DEMO) nuclear fusion reactor. This concept employs PbLi liquid metal as tritium breeder and neutron multiplier, water pressurized at 15.5 MPa as the coolant, and EUROFER as the structural material. The current design is based on the single module segment approach and follows the requirements of the DEMO-2015 baseline design. The module is constituted by a basic toroidal-radial cell that is recursively repeated along the poloidal direction where the liquid metal flows along a radial-poloidal path. The heat generated by the fusion r…