0000000000342369

AUTHOR

Avner Rothschild

0000-0002-2512-0370

showing 5 related works from this author

Structural sensitivity of the spin Hall magnetoresistance in antiferromagnetic thin films

2020

A. Ross and M.K. acknowledge support from the Graduate School of Excellence Materials Science in Mainz (Grant No.DFG/GSC 266). This work was supported by the Max Planck Graduate Center with the Johannes Gutenberg-Universitat Mainz (MPGC). A. Ross, R.L., and M.K. acknowledge support from the DFG Projects No. 423441604 and No. 403502522. R.L. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement FAST No. 752195. All authors from Mainz also acknowledge support from both MaHoJeRo (DAAD Spintronics network, Project No. 57334897), SPIN+X (DFG SFB TRR 173, Project No. A01) and KAUST (Grant No. OSR-2019-CRG8-4048.2). D.A.G.…

Materials scienceMagnetoresistance530 Physicsmedia_common.quotation_subjectLibrary scienceFOS: Physical sciences02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceExcellencePolitical science0103 physical sciencesmedia_common.cataloged_instanceAntiferromagnetismEuropean unionThin film010306 general physicsmedia_commonSpin-½Condensed Matter - Materials ScienceCondensed matter physicsEuropean researchtechnology industry and agricultureMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnology530 PhysikResearch councilChristian ministryCondensed Matter::Strongly Correlated Electrons0210 nano-technologyPhysical Review B
researchProduct

Propagation Length of Antiferromagnetic Magnons Governed by Domain Configurations.

2019

Spintronics seeks to functionalize antiferromagnetic materials to develop memory and logic devices operating at terahertz speed and robust against external magnetic field perturbations. To be useful, such functionality needs to be developed in thin film devices. The key functionality of long-distance spin-transport has, however, so far only been reported in bulk single crystal antiferromagnets, while in thin films, transport has so far been limited to a few nanometers. In this work, we electrically achieve a long-distance propagation of spin-information in thin films of the insulating antiferromagnet hematite. Through transport and magnetic imaging, we demonstrate a strong correlation betwe…

XMLD-PEEM magnetic imagingMaterials scienceMagnetic domain530 PhysicsTerahertz radiationFOS: Physical sciencesBioengineering02 engineering and technologymagnetic domainsspin transportmagnonsMicrometreCondensed Matter::Materials ScienceAntiferromagnetismGeneral Materials ScienceThin filmControlling collective statesSpin-½Condensed Matter - Materials ScienceCondensed matter physicsSpintronicsMechanical EngineeringMagnonmagnon scatteringAntiferromagnetsMaterials Science (cond-mat.mtrl-sci)General Chemistry530 Physik021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNano Letters
researchProduct

An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit

2020

We report room temperature long-distance spin transport of magnons in antiferromagnetic thin film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisotropy. We find intrinsic magnon spin-diffusion lengths of up to 1.5 {\mu}m, and magnetic domain governed decay lengths of 175 nm for the low frequency magnons, through electrical transport measurements demonstrating that the introduction of non-magnetic dopants does not strongly reduce the transport…

010302 applied physicsCondensed Matter - Materials ScienceMaterials scienceCondensed Matter - Mesoscale and Nanoscale PhysicsPhysics and Astronomy (miscellaneous)Magnetic domainCondensed matter physicsMagnetoresistanceMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technologySpin structure021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMagnetic dampingAntiferromagnetismCondensed Matter::Strongly Correlated Electrons0210 nano-technologyAnisotropySpin (physics)Applied Physics Letters
researchProduct

Magnon transport in the presence of antisymmetric exchange in a weak antiferromagnet

2021

The Dzyaloshinskii-Moriya interaction (DMI) is at the heart of many modern developments in the research field of spintronics. DMI is known to generate noncollinear magnetic textures, and can take two forms in antiferromagnets: homogeneous or inter-sublattice, leading to small, canted moments and inhomogeneous or intra-sublattice, leading to formation of chiral structures. In this work, we first determine the strength of the effective field created by the DMI, using SQUID based magnetometry and transport measurements, in thin films of the antiferromagnetic iron oxide hematite, $\alpha$-Fe$_2$O$_3$. We demonstrate that DMI additionally introduces reconfigurability in the long distance magnon …

PhysicsCondensed Matter - Materials ScienceAntisymmetric exchangeField (physics)SpintronicsCondensed matter physicsMagnetometerMagnonMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesElectronic Optical and Magnetic MaterialsMagnetic fieldlaw.inventionCondensed Matter::Materials Sciencelaw0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsZeeman energy010306 general physics0210 nano-technologyJournal of Magnetism and Magnetic Materials
researchProduct

Data for the article "An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit "

2020

Data for the article "An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit " (https://aip.scitation.org/doi/full/10.1063/5.0032940 and https://arxiv.org/abs/2011.09755)

researchProduct