0000000000342421

AUTHOR

Altug Ozpineci

X(3872) and its charmonium content in Heavy Quark limit

X (3872) still presents many puzzles more than a decade after its discovery. Some of its properties, like the isospin violating decays, can easily be accommodated in a molecular model, whereas its other properties, such as radiative decays can be more naturally explained in the quarkonium picture. The best of these schemes can be combined in a picture of X (3872) where it is dominantly a molecular state with some charmonium components. In this work, we present a model based on heavy quark symmetry which describes X (3872) as a superposition of molecular and charmonium components.

research product

Detecting the long-distance structure of the $$X(3872)$$ X ( 3872 )

We study the X(3872)-->D^0 \bar D^0 \pi^0 decay within a D \bar D^* molecular picture for the X(3872) state. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its J/\psi\pi\pi and J/\psi3\pi decays, which are mainly controlled by the details of the X(3872) wave function at short distances. We show that the D^0 \bar D^0 final state interaction can be important, and that a precise measurement of this partial decay width can provide valuable information on the interaction strength between the D^{(*)} \bar D^{(*)} charm mesons.

research product

Detecting the long-distance structure of the X(3872)

We study the X(3872)-->D^0 \bar D^0 \pi^0 decay within a D \bar D^* molecular picture for the X(3872) state. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its J/\psi\pi\pi and J/\psi3\pi decays, which are mainly controlled by the details of the X(3872) wave function at short distances. We show that the D^0 \bar D^0 final state interaction can be important, and that a precise measurement of this partial decay width can provide valuable information on the interaction strength between the D^{(*)} \bar D^{(*)} charm mesons.

research product

X(3872) and its Partners in the Heavy Quark Limit of QCD

In this letter, we propose interpolating currents for the X(3872) resonance, and show that, in the Heavy Quark limit of QCD, the X(3872) state should have degenerate partners, independent of its internal structure. Magnitudes of possible I=0 and I=1 components of the X(3872) are also discussed.

research product