0000000000342507

AUTHOR

Pierre Noé

showing 4 related works from this author

The evolution of the fraction of Er ions sensitized by Si nanostructures in silicon-rich silicon oxide thin films

2009

Photoluminescence (PL) and time-resolved PL experiments as a function of the elaboration process are performed on Er-doped silicon-rich silicon oxide (SRO:Er) thin films grown under NH(3) atmosphere. These PL measurements of the Er(3+) emission at 1.54 microm under non-resonant pumping with the Er f-f transitions are obtained for different Er(3+) concentrations, ranging from 0.05 to 1.4 at.%, and various post-growth annealing temperatures of the layers. High resolution transmission electron microscopy (HRTEM) and energy-filtered TEM (EFTEM) analysis show a high density of Si nanostructures composed of amorphous and crystalline nanoclusters varying from 2.7 x 10(18) to 10(18) cm(-3) as a fun…

PhotoluminescenceMaterials scienceEr ions; photoluminescence; Energy transfer; X-ray absorption spectroscopy[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicAbsorption spectroscopySiliconAnnealing (metallurgy)[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsAnalytical chemistrychemistry.chemical_elementBioengineering02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials01 natural sciencesNanoclusters[SPI.MAT]Engineering Sciences [physics]/Materials0103 physical sciencesGeneral Materials ScienceElectrical and Electronic Engineering[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsHigh-resolution transmission electron microscopySilicon oxideComputingMilieux_MISCELLANEOUS010302 applied physicsMechanical EngineeringX-ray absorption spectroscopyEr ionsGeneral Chemistry021001 nanoscience & nanotechnology[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Amorphous solidchemistryMechanics of MaterialsEnergy transfer[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonicphotoluminescence0210 nano-technology
researchProduct

Ternary and quaternary Ge-S-Se-Sb-Te amorphous chalcogenide thin films for mid-infrared applications

2017

International audience; Chalcogenide materials exhibit a unique portfolio of properties which has led to their wide use for nonvolatile memory applications such as optical storage (CD-RW and DVD-RAM), Conductive Bridging Random Access Memory or Phase Change Random Access Memory (PCRAM). More recently, thanks to huge electronic nonlinearities under electrical field application, chalcogenide glasses are considered as most promising materials to be used as Ovonic Threshold Switching (OTS) selectors [1]. Besides, thanks to high transparency window in the infrared range and large optical nonlinearities [2], chalcogenide alloys offer the opportunity of development of innovative mid-infrared (MIR)…

Materials scienceOptical fiberNonlinear optics[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicChalcogenideOptical films[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics02 engineering and technologyOptical storage[SPI.MAT] Engineering Sciences [physics]/Materials01 natural scienceslaw.invention[SPI.MAT]Engineering Sciences [physics]/Materials010309 opticschemistry.chemical_compoundOpticslaw0103 physical sciencesOptical fibersThin film[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSbusiness.industryNonlinear optics021001 nanoscience & nanotechnology3. Good healthAmorphous solidSupercontinuumNon-volatile memorychemistryOptical variables controlOptical sensors[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsOptical refraction0210 nano-technologybusiness
researchProduct

Single-mode room-temperature emission with a silicon rod lattice

2006

The authors experimentally evidence an increase of light emission efficiency at room temperature in a silicon-on-insulator photonic crystal. The photonic crystal is made of a triangular lattice of silicon rods and operates as a single-mode light extractor. It exhibits a luminescence intensity two orders of magnitude higher than silicon-on-insulator substrate. In light of photoluminescence experiments, emission diagram measurements, and finite difference time domain calculations, they identify the different optical properties of the photonic crystal and they demonstrate the existence of at least a fivefold emission efficiency enhancement per surface unit.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials sciencePhotoluminescence[SPI.OPTI] Engineering Sciences [physics]/Optics / PhotonicPhysics and Astronomy (miscellaneous)Silicon[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPhysics::Opticschemistry.chemical_elementSilicon on insulator02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/Materials7. Clean energy01 natural sciences[SPI.MAT]Engineering Sciences [physics]/Materials0103 physical sciencesHexagonal lattice[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSPhotonic crystal010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industry[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism021001 nanoscience & nanotechnologyYablonovite[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetismchemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicOptoelectronicsLight emission0210 nano-technologybusinessLuminescence
researchProduct

Silicon-microring into a fiber laser cavity for high-repetition-rate pulse train generation

2017

International audience; In 1997, Yoshida et al. inserted a Fabry-Perot filter in a modulation instability fiber laser cavity [1], the free spectral range (FSR) of the Fabry-Perot fixed the RF to 115 GHz; however the pulsed laser was poorly stable. Since then, lasers of increasing performance have been demonstrated using variants of this method. In 2012, Peccianti et al., demonstrated the first fiber laser harmonically mode-locked by integrated high-finesse microresonator [2]. The doped silica, on-chip microresonator provided both high spectral selectivity and nonlinearity, thus promoting the dynamics pulsed at 200 GHz. By using a silicon microring resonator (SMRR), this approach lead to the…

Optical fiberMaterials science[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronicsmode lockingpulse generation02 engineering and technology7. Clean energylaw.invention020210 optoelectronics & photonicsOpticsFiber Bragg gratinglawFiber laser0202 electrical engineering electronic engineering information engineeringDispersion-shifted fiber[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPlastic optical fiberbusiness.industrysiliconLaserMode-lockingphotoabsorptionsilica[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicbusinesslasersPhotonic-crystal fiber
researchProduct