6533b827fe1ef96bd1287244

RESEARCH PRODUCT

Silicon-microring into a fiber laser cavity for high-repetition-rate pulse train generation

Maiwen MeisterhansPhilippe GreluPierre NoéFrédérique De FornelOlivier DemichelAurélien CoilletJean-marc FedeliJean-baptiste JagerFoued AmraniBenoit Cluzel

subject

Optical fiberMaterials science[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronicsmode lockingpulse generation02 engineering and technology7. Clean energylaw.invention020210 optoelectronics & photonicsOpticsFiber Bragg gratinglawFiber laser0202 electrical engineering electronic engineering information engineeringDispersion-shifted fiber[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsPlastic optical fiberbusiness.industrysiliconLaserMode-lockingphotoabsorptionsilica[SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicbusinesslasersPhotonic-crystal fiber

description

International audience; In 1997, Yoshida et al. inserted a Fabry-Perot filter in a modulation instability fiber laser cavity [1], the free spectral range (FSR) of the Fabry-Perot fixed the RF to 115 GHz; however the pulsed laser was poorly stable. Since then, lasers of increasing performance have been demonstrated using variants of this method. In 2012, Peccianti et al., demonstrated the first fiber laser harmonically mode-locked by integrated high-finesse microresonator [2]. The doped silica, on-chip microresonator provided both high spectral selectivity and nonlinearity, thus promoting the dynamics pulsed at 200 GHz. By using a silicon microring resonator (SMRR), this approach lead to the recent realization of 110 GHz-RF mode-locked fiber laser [3]. Working with silicon takes advantage of the huge investment and experience from the microelectronics industry, and contributes to the development of a monolithic platform for optoelectronics [4]. The high Kerr nonlinearity of silicon is instrumental to induce mode locking with low pumping threshold. However, at the main telecom wavelength (1.55 µm), two photo absorption, free-carriers dispersion and their thermalization have to be considered [5], and can be detrimental to formation of the ultrafast dynamics.

https://hal-cea.archives-ouvertes.fr/cea-01989037