0000000000343189
AUTHOR
Mika Hirvensalo
Alternating, private alternating, and quantum alternating realtime automata
We present new results on realtime alternating, private alternating, and quantum alternating automaton models. Firstly, we show that the emptiness problem for alternating one-counter automata on unary alphabets is undecidable. Then, we present two equivalent definitions of realtime private alternating finite automata (PAFAs). We show that the emptiness problem is undecidable for PAFAs. Furthermore, PAFAs can recognize some nonregular unary languages, including the unary squares language, which seems to be difficult even for some classical counter automata with two-way input. Regarding quantum finite automata (QFAs), we show that the emptiness problem is undecidable both for universal QFAs o…
Computational Limitations of Affine Automata
We present two new results on the computational limitations of affine automata. First, we show that the computation of bounded-error rational-values affine automata is simulated in logarithmic space. Second, we give an impossibility result for algebraic-valued affine automata. As a result, we identify some unary languages (in logarithmic space) that are not recognized by algebraic-valued affine automata with cutpoints.
On the computational power of affine automata
We investigate the computational power of affine automata (AfAs) introduced in [4]. In particular, we present a simpler proof for how to change the cutpoint for any affine language and a method how to reduce error in bounded error case. Moreover, we address to the question of [4] by showing that any affine language can be recognized by an AfA with certain limitation on the entries of affine states and transition matrices. Lastly, we present the first languages shown to be not recognized by AfAs with bounded-error.