0000000000343520

AUTHOR

Alexander Pietras

High levels of HIF-2α highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche

High HIF-2alpha protein levels in the sympathetic nervous system-derived childhood tumour neuroblastoma as well as immature phenotype correlate to unfavourable outcome. Here we show that a small subset of perivascularly located, strongly HIF-2alpha-positive tumour cells (MYCN amplified) lacks expression of differentiation markers, but expresses neural crest and early sympathetic progenitor marker genes such as Notch-1, HES-1, c-Kit, dHAND, and vimentin. HIF-2alpha- and CD68-positive tumour-associated macrophages were frequently found close to the immature and HIF-2alpha-positive neuroblastoma cells and as VEGF levels are high in the perivascular niche, we hypothesize that neuroblastoma neur…

research product

Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype

In neuroblastoma specimens, HIF-2alpha but not HIF-1alpha is strongly expressed in well-vascularized areas. In vitro, HIF-2alpha protein was stabilized at 5% O2 (resembling end capillary oxygen conditions) and, in contrast to the low HIF-1alpha activity at this oxygen level, actively transcribed genes like VEGF. Under hypoxia (1% O2), HIF-1alpha was transiently stabilized and primarily mediated acute responses, whereas HIF-2alpha protein gradually accumulated and governed prolonged hypoxic gene activation. Knockdown of HIF-2alpha reduced growth of neuroblastoma tumors in athymic mice. Furthermore, high HIF-2alpha protein levels were correlated with advanced clinical stage and high VEGF expr…

research product

HIF-1α and HIF-2α Are Differentially Regulated In vivo in Neuroblastoma: High HIF-1α Correlates Negatively to Advanced Clinical Stage and Tumor Vascularization

Abstract Purpose: Hypoxia is considered to be a major driving force behind tumor angiogenesis. The stabilization and activation at hypoxia of the hypoxia-inducible factors HIF-1α and HIF-2α and the concomitant induction of expression of vascular endothelial growth factor (VEGF) and other proangiogenic factors provide a molecular frame for hypoxia-driven tumor angiogenesis. This study has investigated how HIF and VEGF protein levels relate to each other with regard to vascularization, tumor stage, and overall survival in neuroblastoma. Experimental Design: Tissue cores taken from tumor specimens representing 93 children with neuroblastoma were arranged on a microarray and stained for HIF-1α,…

research product