0000000000343716

AUTHOR

Jarkko Etula

0000-0002-6930-1165

showing 3 related works from this author

Comparison of mechanical properties and composition of magnetron sputter and plasma enhanced atomic layer deposition aluminum nitride films

2018

A comparative study of mechanical properties and elemental and structural composition was made for aluminum nitride thin films deposited with reactive magnetron sputtering and plasma enhanced atomic layer deposition (PEALD). The sputtered films were deposited on Si (100), Mo (110), and Al (111) oriented substrates to study the effect of substrate texture on film properties. For the PEALD trimethylaluminum–ammonia films, the effects of process parameters, such as temperature, bias voltage, and plasma gas (ammonia versus N2/H2), on the AlN properties were studied. All the AlN films had a nominal thickness of 100 nm. Time-of-flight elastic recoil detection analysis showed the sputtered films t…

elastic moduliMaterials scienceta22102 engineering and technologySubstrate (electronics)mechanical propertiesNitride01 natural sciencesAtomic layer depositionSputtering0103 physical sciencesTexture (crystalline)Composite materialThin filmta216kemiallinen analyysiAlNsputter deposition010302 applied physicsta114Surfaces and InterfacesSputter deposition021001 nanoscience & nanotechnologyCondensed Matter PhysicsX-ray diffractionfysikaaliset ominaisuudetSurfaces Coatings and FilmsElastic recoil detectionmetrologythin filmsAtomic Layer DepositionmetrologiaALDmechanical testingchemical analysisaluminum nitridesputteringohutkalvot0210 nano-technologyJournal of Vacuum Science & Technology A
researchProduct

Room-Temperature Micropillar Growth of Lithium-Titanate-Carbon Composite Structures by Self-Biased Direct Current Magnetron Sputtering for Lithium Io…

2019

Here, an unidentified type of micropillar growth is described at room temperature during conventional direct-current magnetron sputtering (DC-MS) deposition from a Li4Ti5O12+graphite sputter target under negative substrate bias and high operating pressure. These fabricated carbon-Li2O-TiO2 microstructures consisting of various Li4Ti5O12/Li2TiO3/LixTiO2 crystalline phases are demonstrated as an anode material in Li-ion microbatteries. The described micropillar fabrication method is a low-cost, substrate independent, single-step, room-temperature vacuum process utilizing a mature industrial complementary metal-oxide-semiconductor (CMOS)-compatible technology. Furthermore, tentative considerat…

Materials sciencebatteriesComposite numberchemistry.chemical_elementMaterialkemiBiomaterialschemistry.chemical_compoundSputteringElectrochemistryMaterials ChemistryGraphiteamorphous carbons; batteries; lithium titanates; microstructures; porous materialsLithium titanateDeposition (law)business.industrySputter depositionCondensed Matter Physicsamorphous carbonsElectronic Optical and Magnetic Materialschemistrylithium titanatesmicrostructuresOptoelectronicsLithiumbusinessCarbonporous materials
researchProduct

What Determines the Electrochemical Properties of Nitrogenated Amorphous Carbon Thin Films?

2021

Funding Information: We acknowledge the provision of facilities by RawMatters Finland Infrastructure (RAMI, no. 292884), Aalto University Bioeconomy, and OtaNano - Nanomicroscopy Center (Aalto-NMC). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. We acknowledge CSC – IT Center for Science, Finland, for computational resources. S.S. acknowledges funding from the Walter Ahlström Foundation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skł…

General Chemical EngineeringLibrary science02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencessähkökemia0104 chemical sciencesChemical societyPolitical scienceMaterials Chemistrymedia_common.cataloged_instanceEuropean union0210 nano-technologymedia_common
researchProduct