Spatial reasoning withRCC8and connectedness constraints in Euclidean spaces
The language RCC 8 is a widely-studied formalism for describing topological arrangements of spatial regions. The variables of this language range over the collection of non-empty, regular closed sets of n-dimensional Euclidean space, here denoted RC + ( R n ) , and its non-logical primitives allow us to specify how the interiors, exteriors and boundaries of these sets intersect. The key question is the satisfiability problem: given a finite set of atomic RCC 8 -constraints in m variables, determine whether there exists an m-tuple of elements of RC + ( R n ) satisfying them. These problems are known to coincide for all n � 1 , so that RCC 8 -satisfiability is independent of dimension. This c…
Topological Logics with Connectedness over Euclidean Spaces
We consider the quantifier-free languages, Bc and Bc °, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of R n ( n ≥ 2) and, additionally, over the regular closed semilinear sets of R n . The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1,…