0000000000344122

AUTHOR

S. V. Mikhailov

How to perform QCD analysis of DIS in Analytic Perturbation Theory

We apply (Fractional) Analytic Perturbation Theory (FAPT) to the QCD analysis of the nonsinglet nucleon structure function $F_2(x,Q^2)$ in deep inelastic scattering up to the next leading order and compare the results with ones obtained within the standard perturbation QCD. Based on a popular parameterization of the corresponding parton distribution we perform the analysis within the Jacobi Polynomial formalism and under the control of the numerical inverse Mellin transform. To reveal the main features of the FAPT two-loop approach, we consider a wide range of momentum transfer from high $Q^2\sim 100 {\rm GeV}^2$ to low $Q^2\sim 0.3 {\rm GeV}^2$ where the approach still works.

research product

Can we understand an auxetic pion-photon transition form factor within QCD?

A state-of-the-art analysis of the pion-photon transition form factor is presented based on an improved theoretical calculation that includes the effect of a finite virtuality of the quasireal photon in the method of light-cone sum rules. We carry out a detailed statistical analysis of the existing experimental data using this method and by employing pion distribution amplitudes with up to three Gegenbauer coefficients a(2), a(4), a(6). Allowing for an error range in the coefficient a(6) approximate to 0, the theoretical predictions for gamma*gamma -> pi(0) obtained with nonlocal QCD sum rules are found to be in good agreement with all data that support a scaling behavior of the transition …

research product