0000000000344132
AUTHOR
M. Kuźniak
Measurement of the permanent electric dipole moment of the neutron
We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…
Neutron to mirror-neutron oscillations in the presence of mirror magnetic fields
We performed ultracold neutron (UCN) storage measurements to search for additional losses due to neutron (n) to mirror-neutron (n') oscillations as a function of an applied magnetic field B. In the presence of a mirror magnetic field B', UCN losses would be maximal for B = B'. We did not observe any indication for nn' oscillations and placed a lower limit on the oscillation time of tau_{nn'} > 12.0 s at 95% C.L. for any B' between 0 and 12.5 uT.
The liquid-argon scintillation pulseshape in DEAP-3600
AbstractDEAP-3600 is a liquid-argon scintillation detector looking for dark matter. Scintillation events in the liquid argon (LAr) are registered by 255 photomultiplier tubes (PMTs), and pulseshape discrimination (PSD) is used to suppress electromagnetic background events. The excellent PSD performance of LAr makes it a viable target for dark matter searches, and the LAr scintillation pulseshape discussed here is the basis of PSD. The observed pulseshape is a combination of LAr scintillation physics with detector effects. We present a model for the pulseshape of electromagnetic background events in the energy region of interest for dark matter searches. The model is composed of (a) LAr scin…
A measurement of the neutron to 199Hg magnetic moment ratio
The neutron gyromagnetic ratio has been measured relative to that of the 199Hg atom with an uncertainty of 0.8 ppm. We employed an apparatus where ultracold neutrons and mercury atoms are stored in the same volume and report the result γn/γHg=3.8424574(30).
Test of Lorentz invariance with spin precession of ultracold neutrons
A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and $^{199}$Hg atoms is reported. %57 No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field $b_{\bot} < 2 \times 10^{-20} {\rm eV}$ (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron $|g_n| < 0.3 $eV/$c^2$ m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit $|g_n| < 3 \times …
Towards a new measurement of the neutron electric dipole moment
International audience; The effort towards a new measurement of the neutron electric dipole moment (nEDM) at the Paul Scherrer Institut's (PSI) new high intensity source of ultracold neutrons (UCN) is described. The experimental technique relies on Ramsey's method of separated oscillatory fields, using UCN in vacuum with the apparatus at ambient temperature. In the first phase, R&D towards the upgrade of the RAL/Sussex/ILL apparatus is being performed at the Institut Laue-Langevin (ILL). In the second phase the apparatus, moved from ILL to PSI, will allow an improvement in experimental sensitivity by a factor of 5. In the third phase, a new spectrometer should gain another order of magnitud…
Additional results from the first dedicated search for neutron–mirror neutron oscillations
International audience; The existence of a mirror world holding a copy of our ordinary particle spectrum could lead to oscillations between the neutron (n) and its mirror partner (n′). Such oscillations could manifest themselves in storage experiments with ultracold neutrons whose storage lifetime would depend on the applied magnetic field. Here, extended details and measurements from the first dedicated experimental search for nn′ oscillations published in [G. Ban, K. Bodek, M. Daum, R. Henneck, S. Heule, M. Kasprzak, N. Khomutov, K. Kirch, S. Kistryn, A. Knecht, P. Knowles, M. Kuźniak, T. Lefort, A. Mtchedlishvili, O. Naviliat-Cuncic, C. Plonka, G. Quéméner, M. Rebetez, D. Rebreyend, S. R…