0000000000344192

AUTHOR

T. Gaussiran

A line-shape analysis for spin-1 NMR signals

An analytic model of the deuteron absorption function has been developed and is compared to experimental NMR signals of deuterated butanol obtained at the SMC experiment in order to determine the deuteron polarization. The absorption function model includes dipolar broadening and a frequency-dependent treatment of the intensity factors. The high-precision TE signal data available are used to adjust the model for Q-meter distortions and dispersion effects. Once the Q-meter adjustment is made, the enhanced polarizations determined by the asymmetry and TE-calibration methods compare well within the accuracy of each method. In analyzing the NMR signals, the quadrupolar coupling constants could …

research product

A large Streamer Chamber muon tracking detector in a high-flux fixed-target application.

Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of 16 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system. was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported. (C) 1999 Elsevier Science B.V. All rights reserved.

research product

The polarized double cell target of the SMC

The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials - butanol, ammonia, and deuterated butanol - with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and …

research product

Measurement of the SMC muon beam polarisation using the asymmetry in the elastic scattering off polarised electrons

A muon beam polarimeter was built for the SMC experiment at the CERN SPS, for beam energies of 100 and 190 GeV. The beam polarisation is determined from the asymmetry in the elastic scattering off the polarised electrons of a ferromagnetic target whose magnetisation is periodically reversed. At muon energies of 100 and 190 GeV the measured polarisation is P-mu = -0.80 +/- 0.03 (stat.) +/- 0.02 (syst.) and P-mu = - 0.797 +/- 0.011 (stat.) +/- 0.012 (syst.), respectively. These results agree with measurements of the beam polarisation using a shape analysis of the decay positron energy spectrum. (C) 2000 Elsevier Science B.V. All rights reserved.

research product

The spin-dependent structure function g1(x) of the deuteron from polarized deep-inelastic muon scattering

We present a new measurement of the spin-dependent structure function $g_{1}^{\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\Gamma_{1}^{\rm d} = \int_{0}^{1} g_{1}^{\rm d}{\rm d}x = 0.041 \pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \pm 0.03$. Using our earlier determination of $\Gamma_{1}^{\rm p}$, …

research product

Measurement of the spin-dependent structure function g1(x) of the deuteron

We report on the first measurement of the spin-dependent structure function g1d of the deuteron in the deep inelastic scattering of polarised muons off polarised deuterons, in the kinematical range 0.006<x<0.6, 1 GeV2<Q2<30 GeV2. The first moment, Γ1d=sh{phonetic}01 g1d dx=0.023±0.020 (stat.) ± 0.015 (syst.), is smaller than the prediction of the Ellis-Jaffe sum rules. Using earlier measurements of g1p, we infer the first moment of the spin-dependent neutron structure function g1n. The difference Γ1p-Γ1n=0.20 ±0.05 (stat.) ± 0.04 (syst.) agrees with the prediction of the Bjorken sum rule, Γ1p-Γ1n=0.191 ±0.002.

research product