0000000000344199

AUTHOR

K. P. Schüler

showing 7 related works from this author

A line-shape analysis for spin-1 NMR signals

1997

An analytic model of the deuteron absorption function has been developed and is compared to experimental NMR signals of deuterated butanol obtained at the SMC experiment in order to determine the deuteron polarization. The absorption function model includes dipolar broadening and a frequency-dependent treatment of the intensity factors. The high-precision TE signal data available are used to adjust the model for Q-meter distortions and dispersion effects. Once the Q-meter adjustment is made, the enhanced polarizations determined by the asymmetry and TE-calibration methods compare well within the accuracy of each method. In analyzing the NMR signals, the quadrupolar coupling constants could …

Coupling constantPhysicsdisNuclear and High Energy PhysicsButanolmedia_common.quotation_subjectsmcpolarized targetQ meterdiPolarization (waves)AsymmetryMolecular physicschemistry.chemical_compoundDipoleNuclear magnetic resonanceDeuteriumchemistrysmc; dis; polarized targetDetectors and Experimental TechniquesInstrumentationShape analysis (digital geometry)media_common
researchProduct

Spin asymmetriesA1and structure functionsg1of the proton and the deuteron from polarized high energy muon scattering

1998

We present the final results of the spin asymmetries A1 and the spin structure functions g1 of the proton and the deuteron in the kinematic range 0.0008<x<0.7 and 0.2<Q2<100 GeV2. For the determination of A1, in addition to the usual method which employs inclusive scattering events and includes a large radiative background at low x, we use a new method which minimizes the radiative background by selecting events with at least one hadron as well as a muon in the final state. We find that this hadron method gives smaller errors for x<0.02, so it is combined with the usual method to provide the optimal set of results.

PhysicsNuclear and High Energy PhysicsParticle physicsRange (particle radiation)MuonProtonScatteringHadronSpin structureNuclear physicsRadiative transferHigh Energy Physics::ExperimentNuclear ExperimentSpin-½Physical Review D
researchProduct

A large Streamer Chamber muon tracking detector in a high-flux fixed-target application.

1999

Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of 16 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system. was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported. (C) 1999 Elsevier Science B.V. All rights reserved.

PhysicsDISNuclear and High Energy PhysicsLarge Hadron ColliderSMCPhysics::Instrumentation and Detectorsbusiness.industryDetectorHigh voltageSTRIPSTracking (particle physics)law.inventionNuclear physicsOpticsSMC; DIS; Large area detectorslawTube (fluid conveyance)Detectors and Experimental TechniquesbusinessLarge area detectorsInstrumentationBeam (structure)Electronic circuit
researchProduct

Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

2009

The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studiedfor hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found.

Nuclear and High Energy PhysicsParticle physicsPhotonNuclear TheoryHERAFOS: Physical sciencesIMPACT PARAMETER SPACEPartonGENERALIZED PARTON DISTRIBUTIONS; IMPACT PARAMETER SPACE; SPIN; HERA01 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)GENERALIZED PARTON DISTRIBUTIONS0103 physical sciencesddc:530Nuclear Experiment010306 general physicsPhysicsElastic scattering010308 nuclear & particles physicsScatteringCompton scatteringHERASPINPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentNucleonBeam (structure)
researchProduct

The polarized double cell target of the SMC

1999

The polarized target of the Spin Muon Collaboration at CERN was used for deep inelastic muon scattering experiments during 1993-1996 with a polarized muon beam to investigate the spin structure of the nucleon. Most of the experiments were carried out with longitudinal target polarization and 190 GeV muons, and some were done with transverse polarization and 100 GeV muons. Protons as well as deuterons were polarized by dynamic nuclear polarization (DNP) in three kinds of solid materials - butanol, ammonia, and deuterated butanol - with maximum degrees of polarization of 94%, 91% and 60%, respectively. Considerable attention was paid to the accuracies of the NMR polarization measurements and …

PhysicsNuclear and High Energy PhysicsDISLarge Hadron ColliderMuonanalysisScatteringSMCPolarized targetSpin structurepolarized protons and deuteronsPolarization (waves)Deep inelastic scatteringNMRdynamic nuclear polarizationSMC; DIS; Polarized targetNuclear physicsDeuteriumPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesNuclear ExperimentNucleonInstrumentation
researchProduct

Measurement of the SMC muon beam polarisation using the asymmetry in the elastic scattering off polarised electrons

2000

A muon beam polarimeter was built for the SMC experiment at the CERN SPS, for beam energies of 100 and 190 GeV. The beam polarisation is determined from the asymmetry in the elastic scattering off the polarised electrons of a ferromagnetic target whose magnetisation is periodically reversed. At muon energies of 100 and 190 GeV the measured polarisation is P-mu = -0.80 +/- 0.03 (stat.) +/- 0.02 (syst.) and P-mu = - 0.797 +/- 0.011 (stat.) +/- 0.012 (syst.), respectively. These results agree with measurements of the beam polarisation using a shape analysis of the decay positron energy spectrum. (C) 2000 Elsevier Science B.V. All rights reserved.

electronNuclear and High Energy PhysicsSMC; DIS; muon polarimetermedia_common.quotation_subjectmuon beamElectronAsymmetryNuclear physicsMagnetizationpolarisation measurementDetectors and Experimental TechniquesNuclear ExperimentInstrumentationmedia_commonPhysicsElastic scatteringDISLarge Hadron ColliderMuonpolarised scatteringSMCmagnetised targetPolarimeterpolarised muonPolarization (waves)muon polarimeterPhysics::Accelerator PhysicsHigh Energy Physics::Experimentpolarised
researchProduct

The spin-dependent structure function g1(x) of the deuteron from polarized deep-inelastic muon scattering

1997

We present a new measurement of the spin-dependent structure function $g_{1}^{\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\Gamma_{1}^{\rm d} = \int_{0}^{1} g_{1}^{\rm d}{\rm d}x = 0.041 \pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \pm 0.03$. Using our earlier determination of $\Gamma_{1}^{\rm p}$, …

PhysicsDISNuclear and High Energy PhysicsStrange quarkMuonSMCScatteringg1 structure functionSMC; DIS; g1 structure functionPerturbative QCDDeep inelastic scatteringNuclear physicsHigh Energy Physics::ExperimentSum rule in quantum mechanicsNucleonParticle Physics - ExperimentSpin-½Physics Letters B
researchProduct