0000000000344204

AUTHOR

Faustino Gómez

A line-shape analysis for spin-1 NMR signals

An analytic model of the deuteron absorption function has been developed and is compared to experimental NMR signals of deuterated butanol obtained at the SMC experiment in order to determine the deuteron polarization. The absorption function model includes dipolar broadening and a frequency-dependent treatment of the intensity factors. The high-precision TE signal data available are used to adjust the model for Q-meter distortions and dispersion effects. Once the Q-meter adjustment is made, the enhanced polarizations determined by the asymmetry and TE-calibration methods compare well within the accuracy of each method. In analyzing the NMR signals, the quadrupolar coupling constants could …

research product

A two-dimensional liquid-filled ionization chamber array prototype for small-field verification: characterization and first clinical tests.

In this work we present the design, characterization and first clinical tests of an in-house developed two-dimensional liquid-filled ionization chamber prototype for the verification of small radiotherapy fields and treatments containing such small fields as in radiosurgery, which consists of 2 mm × 2 mm pixels arranged on a 16×8 rectangular grid. The ionization medium is isooctane. The characterization of the device included the study of depth, field-size and dose-rate dependences, which are sufficiently moderate for a good operation at therapy radiation levels. However, the detector presents an important anisotropic response, up to ≃ 12% for front versus near-lateral incidence, which can …

research product

The spin-dependent structure function g1(x) of the deuteron from polarized deep-inelastic muon scattering

We present a new measurement of the spin-dependent structure function $g_{1}^{\rm d}$ of the deuteron from deep inelastic scattering of 190 GeV polarized muons on polarized deuterons. The results are combined with our previous measurements of $g_{1}^{\rm d}$. A perturbative QCD evolution in next-to-leading order is used to compute $g_{1}^{\rm d}(x)$ at a constant $Q^{2}$. At $Q^{2} = 10$ GeV$^{2}$, we obtain a first moment $\Gamma_{1}^{\rm d} = \int_{0}^{1} g_{1}^{\rm d}{\rm d}x = 0.041 \pm 0.008$, a flavour-singlet axial charge of the nucleon $a_{0} = 0.30 \pm 0.08$, and an axial charge of the strange quark $a_{s} = -0.09 \pm 0.03$. Using our earlier determination of $\Gamma_{1}^{\rm p}$, …

research product