0000000000344252

AUTHOR

Jd Zornoza

showing 3 related works from this author

Search for High-energy Neutrinos from Gravitational Wave Event GW151226 and Candidate LVT151012 with ANTARES and IceCube

2017

[EN] The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by ANTARES, within +/- 500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission …

POINT-LIKEGravitational-wave observatoryPhysics and Astronomy (miscellaneous)[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]AstronomyELECTROMAGNETIC COUNTERPARTSastro-ph.HE; astro-ph.HEAstrophysics01 natural sciences7. Clean energylocalizationIceCubeBinary black holeLIGO010303 astronomy & astrophysicsTelescopeGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)astro-ph.HEFollow-upData-acquisition systemobservatoryNeutrino detectorElectromagnetic counterpartsSIMULATIONBlack-hole mergersLigoGamma-ray burstsNeutrinoAstrophysics - High Energy Astrophysical PhenomenaHost galaxiesSimulationGravitational waveBLACK-HOLE MERGERSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesDATA-ACQUISITION SYSTEMGravitational wavesneutrino: productionGeneral Relativity and Quantum CosmologyBinary black holeOnes gravitacionalsLiGO Observatory0103 physical sciencesNeutrinoGW151226ddc:530NeutrinsNeutrinos010306 general physicsPoint-likeANTARESCosmologiaGravitational wavebackgroundgravitational radiationAstronomy530 PhysikLIGONeutron starGravitational Waves Neutrinos Antares IceCube LIGOAntaresPhysics and Astronomyblack hole: binary13. Climate action:Física::Astronomia i astrofísica [Àrees temàtiques de la UPC]FISICA APLICADAAstronomiaDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]FOLLOW-UPPhysical Review D. Particles and Fields
researchProduct

The search for Muon neutrinos from northern hemisphere gamma-ray bursts with AMANDA

2007

We present the results of the analysis of neutrino observations by the Antarctic Muon and Neutrino Detector Array (AMANDA) correlated with photon observations of more than 400 gamma-ray bursts (GRBs) in the Northern Hemisphere from 1997 to 2003. During this time period, AMANDA's effective collection area for muon neutrinos was larger than that of any other existing detector. Based on our observations of zero neutrinos during and immediately prior to the GRBs in the dataset, we set the most stringent upper limit on muon neutrino emission correlated with gamma-ray bursts. Assuming a Waxman-Bahcall spectrum and incorporating all systematic uncertainties, our flux upper limit has a normalizatio…

Antarctic Muon And Neutrino Detector ArrayPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesFluxAstrophysicsAstrophysics01 natural sciencesGamma rays: bursts; Neutrinos0103 physical sciencesMuon neutrinoNeutrinos010306 general physics010303 astronomy & astrophysicsPhysicsGamma rays: burstsMuonAstrophysics (astro-ph)Order (ring theory)Astronomy and AstrophysicsSpace and Planetary ScienceAstronomiaHigh Energy Physics::ExperimentNeutrinoGamma-ray burstEnergy (signal processing)
researchProduct

Sedimentation and Fouling of Optical Surfaces at the ANTARES Site

2003

ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES collaboration has performed a series of in-situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to satur…

PhotomultiplierTransmission lossEquatorMineralogyFOS: Physical sciencesAstrophysics[SDU.ASTR] Sciences of the Universe [physics]/Astrophysics [astro-ph]Neutrino telescopeAstrophysics01 natural scienceslaw.inventionTelescope[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)law0103 physical sciencesfouling; neutrino telescope; sea water properties; sedimentation; undersea cherenkov detectors14. Life underwater010306 general physicsCherenkov radiationZenithPhysicsUndersea Cherenkov detectors[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Sea water propertieAstronomy and AstrophysicsFoulingSedimentationHigh Energy Physics - Phenomenology[PHYS.ASTR.CO] Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Física nuclearNeutrinoSedimentation
researchProduct