0000000000344794
AUTHOR
Tobias Scheel
IL-2 Expression in Activated Human Memory FOXP3(+) Cells Critically Depends on the Cellular Levels of FOXP3 as Well as of Four Transcription Factors of T Cell Activation.
The human CD4(+)FOXP3(+) T cell population is heterogeneous and consists of various subpopulations which remain poorly defined. Anergy and suppression are two main functional characteristics of FOXP3(+)Treg cells. We used the anergic behavior of FOXP3(+)Treg cells for a better discrimination and characterization of such subpopulations. We compared IL-2-expressing with IL-2-non-expressing cells within the memory FOXP3(+) T cell population. In contrast to IL-2-non-expressing FOXP3(+) cells, IL-2-expressing FOXP3(+) cells exhibit intermediate characteristics of Treg and Th cells concerning the Treg cell markers CD25, GITR, and Helios. Besides lower levels of FOXP3, they also have higher levels…
Repression of Cyclic Adenosine Monophosphate Upregulation Disarms and Expands Human Regulatory T Cells
Abstract The main molecular mechanism of human regulatory T cell (Treg)-mediated suppression has not been elucidated. We show in this study that cAMP represents a key regulator of human Treg function. Repression of cAMP production by inhibition of adenylate cyclase activity or augmentation of cAMP degradation through ectopic expression of a cAMP-degrading phosphodiesterase greatly reduces the suppressive activity of human Treg in vitro and in a humanized mouse model in vivo. Notably, cAMP repression additionally abrogates the anergic state of human Treg, accompanied by nuclear translocation of NFATc1 and induction of its short isoform NFATc1/αA. Treg expanded under cAMP repression, however,…