0000000000345012

AUTHOR

Gordan Krnjaic

showing 2 related works from this author

The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe

2020

It is commonly assumed that the energy density of the Universe was dominated by radiation between reheating after inflation and the onset of matter domination 54,000 years later. While the abundance of light elements indicates that the Universe was radiation dominated during Big Bang Nucleosynthesis (BBN), there is scant evidence that the Universe was radiation dominated prior to BBN. It is therefore possible that the cosmological history was more complicated, with deviations from the standard radiation domination during the earliest epochs. Indeed, several interesting proposals regarding various topics such as the generation of dark matter, matter-antimatter asymmetry, gravitational waves,…

High Energy Physics - TheoryCosmology and Nongalactic Astrophysics (astro-ph.CO)reheatingmedia_common.quotation_subjectnucleosynthesis: big bangDark matterFOS: Physical sciencesPrimordial black holeGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesCosmologyGeneral Relativity and Quantum Cosmologydark matterGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesenergy: density010306 general physicsmedia_commonInflation (cosmology)Physics010308 nuclear & particles physicsGravitational wave[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]gravitational radiationAstronomyUniverseinflation: modelBaryogenesisHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph][PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]history[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]black hole: primordialasymmetryAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmology with a very light Lμ − Lτ gauge boson

2019

In this paper, we explore in detail the cosmological implications of an abelian L − L gauge extension of the Standard Model featuring a light and weakly coupled Z′. Such a scenario is motivated by the longstanding ∼ 4σ discrepancy between the measured and predicted values of the muon’s anomalous magnetic moment, (g − 2) , as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the Z′ population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significa…

Nuclear and High Energy PhysicsParticle physicscosmological modelZ': couplingPopulationNeutrino decoupling01 natural sciences7. Clean energygauge boson: abeliansymbols.namesakeradiation: density0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityenergy: densityNeutrino Physics010306 general physicseducationPhysicsGauge bosoneducation.field_of_studyMuonHubble constantAnomalous magnetic dipole momentspace-time: expansionmuon: magnetic moment010308 nuclear & particles physicsCoupling (probability)Cosmology of Theories beyond the SMHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard Modelsymbolslcsh:QC770-798Neutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]neutrino: decouplingAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawJournal of High Energy Physics
researchProduct