0000000000345028
AUTHOR
Jaakko Leppäniemi
Operation of transition-edge sensors with excess thermal noise
The superconducting transition-edge sensor (TES) is currently one of the most attractive choices for ultra-high resolution calorimetry in the keV x-ray band, and is being considered for future ESA and NASA missions. We have performed a study on the noise characteristics of Au/Ti bilayer TESs, at operating temperatures around ~100 mK, with the SQUID readout at 1.5 K. Experimental results indicate that without modifications the back-action noise from the SQUID chip degrades the noise characteristics significantly. We present a simple and effective solution to the problem: by installing an extra shunt resistor which absorbs the excess radiation from the SQUID input, we have reduced the excess …
Electronic transport in intermediate sized carbon nanotubes
We have studied systematically basic transport properties of multiwalled carbon nanotubes in a relatively unexplored diameter range, corresponding to tubes just slightly larger than single- or double-walled tubes to tubes up to 17 nm in diameter. We find in all the smaller tubes a gap in the transport data which increases with decreasing tube diameter. Within the gap region of several tubes, negative differential resistance was observed at small or moderate biases and at bias values that scaled inversely with the tube diameter. For this latter type of behavior of the conductance, we tentatively propose interlayer resonant tunneling as the cause.