0000000000345178

AUTHOR

Yehuda B. Band

showing 3 related works from this author

Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope

2020

An experimental test at the intersection of quantum physics and general relativity is proposed: measurement of relativistic frame dragging and geodetic precession using intrinsic spin of electrons. The behavior of intrinsic spin in spacetime dragged and warped by a massive rotating body is an experimentally open question, hence the results of such a measurement could have important theoretical consequences. Such a measurement is possible by using mm-scale ferromagnetic gyroscopes in orbit around the Earth. Under conditions where the rotational angular momentum of a ferromagnet is sufficiently small, a ferromagnet's angular momentum is dominated by atomic electron spins and is predicted to e…

Angular momentumGeneral relativityFOS: Physical sciencesElectronFrame-draggingGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciences7. Clean energyGeneral Relativity and Quantum Cosmologylaw.inventionPhysics::Geophysicslaw0103 physical sciencesddc:530010306 general physicsSpin (physics)Geodetic effectPhysicsQuantum Physics010308 nuclear & particles physicsGyroscopeQuantum electrodynamicsPhysics::Space PhysicsPrecessionCondensed Matter::Strongly Correlated ElectronsQuantum Physics (quant-ph)
researchProduct

Ferromagnetic gyroscopes for tests of fundamental physics

2020

A ferromagnetic gyroscope (FG) is a ferromagnet whose angular momentum is dominated by electron spin polarization and that will precess under the action of an external torque, such as that due to a magnetic field. Here we model and analyze FG dynamics and sensitivity, focusing on practical schemes for experimental realization. In the case of a freely floating FG, we model the transition from dynamics dominated by libration in relatively high externally applied magnetic fields, to those dominated by precession at relatively low applied fields. Measurement of the libration frequency enables in situ measurement of the magnetic field and a technique to reduce the field below the threshold for w…

Angular momentumgyroscopePhysics and Astronomy (miscellaneous)Field (physics)Atomic Physics (physics.atom-ph)Materials Science (miscellaneous)physics beyond the standard modelFOS: Physical sciencesApplied Physics (physics.app-ph)01 natural sciences530Physics - Atomic Physics010305 fluids & plasmasMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesLibrationddc:530Electrical and Electronic Engineering010306 general physicsLarmor precessionSuperconductivityPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMeissner effectFerromagnetism gyroscope physics beyond the standard model Meissner effectPhysics - Applied PhysicsferromagnetismAtomic and Molecular Physics and OpticsMagnetic fieldMeissner effectFerromagnetismPrecessionQuantum Physics (quant-ph)
researchProduct

Dynamics of a Ferromagnetic Particle Levitated Over a Superconductor

2018

Under conditions where the angular momentum of a ferromagnetic particle is dominated by intrinsic spin, applied torque is predicted to cause gyroscopic precession of the particle. If the particle is sufficiently isolated from the environment, a measurement of spin precession can potentially yield sensitivity to torque beyond the standard quantum limit. Levitation of a micron-scale ferromagnetic particle above a superconductor is a possible method of near frictionless suspension enabling observation of ferromagnetic particle precession and ultrasensitive torque measurements. We experimentally investigate the dynamics of a micron-scale ferromagnetic particle levitated above a superconducting …

SuperconductivityPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpinsQuantum limitGeneral Physics and AstronomyFOS: Physical sciencesPhysics - Applied Physics02 engineering and technologyApplied Physics (physics.app-ph)021001 nanoscience & nanotechnology01 natural sciencesPhysics::Fluid DynamicsFerromagnetismCondensed Matter::Superconductivity0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)PrecessionLevitationTorque010306 general physics0210 nano-technologyMicroscale chemistry
researchProduct