0000000000345259

AUTHOR

Florian Schuberth

Premature conclusions about the signal‐to‐noise ratio in structural equation modeling research : A commentary on Yuan and Fang (2023)

In a recent article published in this journal, Yuan and Fang (British Journal of Mathematical and Statistical Psychology, 2023) suggest comparing structural equation modeling (SEM), also known as covariance-based SEM (CB-SEM), estimated by normal-distribution-based maximum likelihood (NML), to regression analysis with (weighted) composites estimated by least squares (LS) in terms of their signal-to-noise ratio (SNR). They summarize their findings in the statement that “[c]ontrary to the common belief that CB-SEM is the preferred method for the analysis of observational data, this article shows that regression analysis via weighted composites yields parameter estimates with much smaller stan…

research product

Structural Parameters under Partial Least Squares and Covariance-Based Structural Equation Modeling : A Comment on Yuan and Deng (2021)

In their article, Yuan and Deng argue that a structural parameter under partial least squares structural equation modeling (PLS-SEM) is zero if and only if the same structural parameter is zero under covariance-based structural equation modeling (CB-SEM). Yuan and Deng then conclude that statistical tests on individual structural parameters assessing the null hypothesis of no effect can achieve the same purpose in CB-SEM and PLS-SEM. Our response to their article highlights that the relationship they find between PLS-SEM and CB-SEM structural parameters is not universally valid, and that consequently, tests on individual parameters in CB-SEM and PLS-SEM generally do not fulfill the same pur…

research product