0000000000345376

AUTHOR

Andrea Passamonti

showing 3 related works from this author

Towards asteroseismology of core-collapse supernovae with gravitational-wave observations – I. Cowling approximation

2017

Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS–shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a backgr…

Astrophysics::High Energy Astrophysical Phenomenaoscillations [Stars]general [Supernovae]Collapse (topology)FOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesAsteroseismologyGeneral Relativity and Quantum CosmologyGravitational waves0103 physical sciencesCuriemedia_common.cataloged_instanceAstrophysics::Solar and Stellar AstrophysicsEuropean unionCowling010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)media_commonAstronomía y AstrofísicaPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)numerical [Methods]010308 nuclear & particles physicsGravitational waveAsteroseismologyAstronomyAstronomy and Astrophysicsneutron [Stars]SupernovaAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Towards asteroseismology of core-collapse supernovae with gravitational wave observations – II. Inclusion of space–time perturbations

2018

Improvements in ground-based, advanced gravitational wave (GW) detectors may allow in the near future to observe the GW signal of a nearby core-collapse supernova. For the most common type of progenitors, likely with slowly rotating cores, the dominant GW emission mechanisms are the post-bounce oscillations of the proto-neutron star (PNS) before the explosion. We present a new procedure to compute the eigenmodes of the system formed by the PNS and the stalled accretion shock in general relativity including spacetime perturbations. The new method improves on previous results by accounting for perturbations of both the lapse function and the conformal factor. We apply our analysis to two nume…

PhysicsSpacetime010308 nuclear & particles physicsGravitational waveGeneral relativitySpace timeAstronomy and AstrophysicsConformal mapAstrophysics01 natural sciencesAsteroseismologyInstabilitySupernovaSpace and Planetary Science0103 physical sciences010303 astronomy & astrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - II. Spacetime perturbations

2018

Improvements in ground-based, advanced gravitational wave (GW) detectors may allow in the near future to observe the GW signal of a nearby core-collapse supernova. For the most common type of progenitors, likely with slowly rotating cores, the dominant GW emission mechanisms are the post-bounce oscillations of the proto-neutron star (PNS) before the explosion. We present a new procedure to compute the eigenmodes of the system formed by the PNS and the stalled accretion shock in general relativity including spacetime perturbations. The new method improves on previous results by accounting for perturbations of both the lapse function and the conformal factor. We apply our analysis to two nume…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics - High Energy Astrophysical PhenomenaGeneral Relativity and Quantum CosmologySolar and Stellar Astrophysics (astro-ph.SR)
researchProduct