0000000000345376

AUTHOR

Andrea Passamonti

Towards asteroseismology of core-collapse supernovae with gravitational-wave observations – I. Cowling approximation

Gravitational waves from core-collapse supernovae are produced by the excitation of different oscillation modes in the protoneutron star (PNS) and its surroundings, including the shock. In this work we study the relationship between the post-bounce oscillation spectrum of the PNS–shock system and the characteristic frequencies observed in gravitational-wave signals from core-collapse simulations. This is a fundamental first step in order to develop a procedure to infer astrophysical parameters of the PNS formed in core-collapse supernovae. Our method combines information from the oscillation spectrum of the PNS, obtained through linear perturbation analysis in general relativity of a backgr…

research product

Towards asteroseismology of core-collapse supernovae with gravitational-wave observations - II. Spacetime perturbations

Improvements in ground-based, advanced gravitational wave (GW) detectors may allow in the near future to observe the GW signal of a nearby core-collapse supernova. For the most common type of progenitors, likely with slowly rotating cores, the dominant GW emission mechanisms are the post-bounce oscillations of the proto-neutron star (PNS) before the explosion. We present a new procedure to compute the eigenmodes of the system formed by the PNS and the stalled accretion shock in general relativity including spacetime perturbations. The new method improves on previous results by accounting for perturbations of both the lapse function and the conformal factor. We apply our analysis to two nume…

research product

Towards asteroseismology of core-collapse supernovae with gravitational wave observations – II. Inclusion of space–time perturbations

Improvements in ground-based, advanced gravitational wave (GW) detectors may allow in the near future to observe the GW signal of a nearby core-collapse supernova. For the most common type of progenitors, likely with slowly rotating cores, the dominant GW emission mechanisms are the post-bounce oscillations of the proto-neutron star (PNS) before the explosion. We present a new procedure to compute the eigenmodes of the system formed by the PNS and the stalled accretion shock in general relativity including spacetime perturbations. The new method improves on previous results by accounting for perturbations of both the lapse function and the conformal factor. We apply our analysis to two nume…

research product