0000000000345422

AUTHOR

G. Chubarian

T=5/2 states in 9Li: Isobaric analog states of 9He

The thick target inverse kinematic method was applied to the study of isobaric analog states in the neutron-rich nucleus 9Li. For this purpose, an excitation function for 8He+p elastic scattering was measured in the center-of-momentum energy range from 1.6 to 5.8 MeV. Three T=5/2 states in 9Li (isobaric analogs of 9He) were observed. Restrictions on the spin-parity assignments are provided according to R-matrix calculations, and conclusions regarding the structure of 9He are given. peerReviewed

research product

Fusion-fission and quasifission of superheavy systems with Z=110-116 formed in Ca 48 -induced reactions

Background: In heavy-ion-induced reactions the mechanism leading to the formation of the compound nucleus and the role of quasifission is still not clear. Purpose: Investigation of the quasifission process of superheavy composite systems with Z = 110-116 and comparison with properties of fusion-fission and quasifission of lighter composite systems. Method: Mass and energy distributions of fissionlike fragments formed in the reactions 48Ca +232 Th, 238U, 244Pu, and 248Cm at energies near the Coulomb barrier have been measured using the double-arm time-of-flight spectrometer CORSET at the U-400 cyclotron of the FLNR JINR. Results: The most probable fragment masses as well as total kinetic ene…

research product

The rare isotope beams production at the Texas A&M university Cyclotron Institute

The Cyclotron Institute at Texas A&M is currently configuring a scheme for the production of radioactive-ion beams that incorporates a light-ion guide and a heavy-ion guide coupled with an electron-cyclotron-resonance ion source constructed for charge-breeding. This scheme is part of an upgrade to the facility and is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources used in the project is presented. peerReviewed

research product