0000000000346716

AUTHOR

D. Peyrade

showing 3 related works from this author

Nano-manipulation of confined electromagnetic fields with a near-field probe

2008

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic[SPI.ELEC] Engineering Sciences [physics]/Electromagnetism[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[SPI.MAT] Engineering Sciences [physics]/Materials[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.TRON] Engineering Sciences [physics]/Electronics[SPI.MAT]Engineering Sciences [physics]/Materials[SPI.TRON]Engineering Sciences [physics]/Electronics[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUS
researchProduct

Optical field molding within near-field coupled twinned nanobeam cavities

2011

Twinned high Q nanobeam cavities can be optically coupled while being placed in the optical near-field of each other. They form then a new optical system which supports discrete field maps addressable by wavelength selection.

WavelengthOpticsMaterials scienceOptical tweezersField (physics)business.industryPhysics::OpticsNear-field scanning optical microscopeNear and far fieldMolding (process)Optical fieldbusinessPhotonic crystal
researchProduct

Coupling evanescently low loss Silicon-on-insulator ridge waveguides including high Q nanocavities for light control

2011

Summary form only given. In this work, we propose an innovative way to achieve an air-slotted nanocavities by coupling evanescently low loss Silicon-on-insulator (SOI) ridge waveguides(WGs) including high Q nanocavities exhibiting an ultrasmall modal volume V. We first show that coupling two WGs allows us to achieve a field confinement within the air slot as low as lambda/30 while preserving a high group index of the guided modes. Then we demonstrate that merging such coupled WGs with state-of-the-art high-Q/small V nanocavities is a robust way to achieve a single compact (1 µm × 3 µm) air-slotted resonator on substrate. Finally, we extend the concept to multiple air-slotted resonator syste…

CouplingResonatorOpticsMaterials scienceField (physics)Ridge waveguidesbusiness.industryLight controlSilicon on insulatorSubstrate (electronics)businessLambda2011 13th International Conference on Transparent Optical Networks
researchProduct