0000000000347221
AUTHOR
M. Broyer
Characterization of [Cu]-MCM-41 by XPS and CO or NO adsorption heat measurements
We report the characterization of copper doped MCM-41 prepared by original direct synthesis by XPS and adsorption calorimetry of CO and NO, which are selective molecular probes for Cu(I) and Cu(II) respectively. Investigation of the nature of the copper ions in this particular calcined Cu-MCM-41 by NO adsorption calorimetry shows that two types of energetically distinct adsorption sites exist, meaning the presence of two populations of Cu(II) species differently coordinated to the silica surface in quasi-equimolar concentration, as ascertained by XPS data. A small amount of Cu(I) was also detected, probably stemming from a partial reduction upon the successive vacuum treatments. The respect…
Characterization and utilization of MFI zeolites and MCM-41 materials for gaseous pollutant adsorption
Physisorption of n-hexane, trichloroethylene, tetrachloroethylene, carbon and nitrogen oxides on a microporous ZSM-5 (Si/Al=339) zeolite and an amorphous mesoporous MCM-41 (Si/Al=∞) sample was examined by isothermal thermogravimetry, manometry and calorimetry to evaluate the feasibility of using these porous materials for gaseous pollutant adsorption at room temperature. The adsorbents showed very interesting adsorption properties for hydrocarbons. ZSM-5 exhibited the strongest adsorption affinity and MCM-41 showed the largest adsorption capacity. Another main feature in this work was to observe a stepped-isotherm for the adsorption of C2Cl4 on ZSM-5. Such a substep located at very low rela…