Radiation resistance of nanolayered silicon nitride capacitors
Abstract Single-layered and multi-layered 20–60 nm thick silicon nitride (Si3N4) dielectric nanofilms were fabricated using a low-pressure chemical vapour deposition (LPCVD) method. The X-ray photoelectron spectroscopy (XPS) confirmed less oxygen content in the multi-layered nanofilms. The capacitors with Si3N4 multilayer demonstrated a tendency to a higher breakdown voltage compared to the capacitors with Si3N4 single layer. Si3N4 nanofilms and capacitors with Si3N4 dielectric were exposed to 1 kGy dose of gamma photons. Fourier transform infrared (FTIR) spectroscopy analysis showed that no modifications of the chemical bonds of Si3N4 were present after irradiation. Also, gamma irradiation…
Time-resolved FDTD and experimental FTIR study of gold micropatch arrays for wavelength-selective mid-infrared optical coupling
The work was partially supported by Sweden's innovation agency Vinnova (Large area CVD graphene-based sensors/IR-photodetectors 2020-00797) and EU CAMART2 project (European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No.739508). TY acknowledges European Regional Development Fund Project No. 1.1.1.2/VIAA/4/20/740.