0000000000347356

AUTHOR

D. Daniel

Homogeneous Suslinian Continua

AbstractA continuumis said to be Suslinian if it does not contain uncountably many mutually exclusive non-degenerate subcontinua. Fitzpatrick and Lelek have shown that a metric Suslinian continuum X has the property that the set of points at which X is connected im kleinen is dense in X. We extend their result to Hausdorff Suslinian continua and obtain a number of corollaries. In particular, we prove that a homogeneous, non-degenerate, Suslinian continuum is a simple closed curve and that each separable, non-degenerate, homogenous, Suslinian continuum is metrizable.

research product

Lifting paths on quotient spaces

Abstract Let X be a compactum and G an upper semi-continuous decomposition of X such that each element of G is the continuous image of an ordered compactum. If the quotient space X / G is the continuous image of an ordered compactum, under what conditions is X also the continuous image of an ordered compactum? Examples around the (non-metric) Hahn–Mazurkiewicz Theorem show that one must place severe conditions on G if one wishes to obtain positive results. We prove that the compactum X is the image of an ordered compactum when each g ∈ G has 0-dimensional boundary. We also consider the case when G has only countably many non-degenerate elements. These results extend earlier work of the firs…

research product

Continuous images of arcs: Extensions of Cornette's Theorem

In [J.L. Cornette “Image of a Hausdorff arc” is cyclically extensible and reducible Trans. Am. Math. Soc., 199 (1974), pp. 253–267], Cornette proved that a locally connected Hausdorff continuum X is the continuous image of an arc if and only if each of its cyclic elements is the continuous image of an arc. Cyclic elements form a closed null cover of X by retracts of X. We generalize Cornette's result to closed null covers of X with a dendritic structure. We give examples to show that some of our conditions are necessary and we pose some open questions.

research product