0000000000347424
AUTHOR
Henry Weiner
Anti-oxidative effects in response to pentaerithrityl tetranitrate (PETN) treatment are mediated by heme oxygenase-1 and ferritin induction and prevent the development of nitrate tolerance and cross-tolerance in vivo
Oxidative Inhibition of the Mitochondrial Aldehyde Dehydrogenase Promotes Nitroglycerin Tolerance in Human Blood Vessels
Objectives We tested the hypothesis of whether an inhibition of the nitroglycerin (GTN) bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) contributes to GTN tolerance in human blood vessels. Background The hemodynamic effects of GTN are rapidly blunted by the development of tolerance, a phenomenon associated with increased formation of reactive oxygen species (ROS). Recent studies suggest that ROS-induced inhibition of ALDH-2 accounts for tolerance in animal models. Methods Segments of surgically removed arteria mammaria and vena saphena from patients undergoing coronary bypass surgery were used to examine the vascular responsiveness to GTN and the endothelium-dependent vas…
the role of mitochondrial aldehyde dehydrognase (ALDH-2) for bioactivation of organic nitrates: “Proof of concept” through investigations in ALDH-2 knockout mice
Heme oxygenase-1: a novel key player in the development of tolerance in response to organic nitrates.
Objective— Nitrate tolerance is likely attributable to an increased production of reactive oxygen species (ROS) leading to an inhibition of the mitochondrial aldehyde dehydrogenase (ALDH-2), representing the nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN) bioactivating enzyme, and to impaired nitric oxide bioactivity and signaling. We tested whether differences in their capacity to induce heme oxygenase-1 (HO-1) might explain why PETN and not GTN therapy is devoid of nitrate and cross-tolerance. Methods and Results— Wistar rats were treated with PETN or GTN (10.5 or 6.6 μg/kg/min for 4 days). In contrast to GTN, PETN did not induce nitrate tolerance or cross-tolerance as assess…
Role of Reduced Lipoic Acid in the Redox Regulation of Mitochondrial Aldehyde Dehydrogenase (ALDH-2) Activity
Chronic therapy with nitroglycerin results in a rapid development of nitrate tolerance, which is associated with an increased production of reactive oxygen species. We have recently shown that mitochondria are an important source of nitroglycerin-induced oxidants and that the nitroglycerin-bioactivating mitochondrial aldehyde dehydrogenase is oxidatively inactivated in the setting of tolerance. Here we investigated the effect of various oxidants on aldehyde dehydrogenase activity and its restoration by dihydrolipoic acid. In vivo tolerance in Wistar rats was induced by infusion of nitroglycerin (6.6 microg/kg/min, 4 days). Vascular reactivity was measured by isometric tension studies of iso…