0000000000347690

AUTHOR

Jeremy J. Lambert

Pharmacological disruption of the MID1/α4 interaction reduces mutant Huntingtin levels in primary neuronal cultures.

Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation a…

research product

Antidepressants and Antipsychotic Drugs Colocalize with 5-HT(3) Receptors in Raft-Like Domains

Despite different chemical structure and pharmacodynamic signaling pathways, a variety of antidepressants and antipsychotics inhibit ion fluxes through 5-HT3receptors in a noncompetitive manner with the exception of the known competitive antagonists mirtazapine and clozapine. To further investigate the mechanisms underlying the noncompetitive inhibition of the serotonin-evoked cation current, we quantified the concentrations of different types of antidepressants and antipsychotics in fractions of sucrose flotation gradients isolated from HEK293 (human embryonic kidney 293) cells stably transfected with the 5-HT3Areceptor and of N1E-115 neuroblastoma cells in relation to the localization of …

research product