0000000000347700

AUTHOR

Sybille Krauß

0000-0002-5653-9289

showing 5 related works from this author

Pharmacological disruption of the MID1/α4 interaction reduces mutant Huntingtin levels in primary neuronal cultures.

2017

Expression of mutant Huntingtin (HTT) protein is central to the pathophysiology of Huntington's Disease (HD). The E3 ubiquitin ligase MID1 appears to have a key role in facilitating translation of the mutant HTT mRNA suggesting that interference with the function of this complex could be an attractive therapeutic approach. Here we describe a peptide that is able to disrupt the interaction between MID1 and the α4 protein, a regulatory subunit of protein phosphatase 2A (PP2A). By fusing this peptide to a sequence from the HIV-TAT protein we demonstrate that the peptide can disrupt the interaction within cells and show that this results in a decrease in levels of ribosomal S6 phosphorylation a…

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesHuntingtinMid1 protein mouseProtein subunitUbiquitin-Protein LigasesMutantPrimary Cell CulturePeptide03 medical and health sciencesMiceHuntington's diseasemental disordersmedicineAnimalsHumansHtt protein mouseddc:610Protein Phosphatase 2Neuronschemistry.chemical_classificationMessenger RNAHuntingtin ProteinbiologyChemistryGeneral NeuroscienceProteinsgenetics [Huntingtin Protein]metabolism [Protein Phosphatase 2]metabolism [Proteins]Protein phosphatase 2medicine.diseaseUbiquitin ligaseCell biology030104 developmental biologyHEK293 Cellsmetabolism [Neurons]metabolism [Huntingtin Protein]Mutationbiology.proteinProtein Binding
researchProduct

MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression.

2018

The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542…

0301 basic medicineUntranslated regionSmall interfering RNAPhysiologymetabolism [Microtubule Proteins]Alzheimer's DiseaseBiochemistryImmune PhysiologyMedicine and Health SciencesSmall interfering RNAsmetabolism [Transcription Factors]3' Untranslated RegionsImmune System ProteinsMultidisciplinarybiologyReverse Transcriptase Polymerase Chain ReactionMessenger RNAQRNuclear ProteinsNeurodegenerative DiseasesTranslation (biology)EnzymesUbiquitin ligaseCell biologyNucleic acidsNeurologyMicrotubule ProteinsMedicineOxidoreductasesLuciferasemetabolism [Nuclear Proteins]Research ArticleScienceUbiquitin-Protein LigasesImmunologyTransfectionResearch and Analysis MethodsReal-Time Polymerase Chain ReactionAntibodies03 medical and health sciencesMental Health and PsychiatrymicroRNAGeneticsHumansddc:610Non-coding RNAMolecular Biology TechniquesMolecular BiologyMessenger RNABiology and life sciencesThree prime untranslated regionHEK 293 cellsProteinsGene regulationphysiology [MicroRNAs]MicroRNAs030104 developmental biologyHEK293 CellsEnzymologybiology.proteinRNAProtein TranslationDementiaGene expressionTranscription FactorsMid1 protein human
researchProduct

Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex.

2012

Expansion of CAG repeats is a common feature of various neurodegenerative disorders, including Huntington's disease. Here we show that expanded CAG repeats bind to a translation regulatory protein complex containing MID1, protein phosphatase 2A and 40S ribosomal S6 kinase. Binding of the MID1-protein phosphatase 2A protein complex increases with CAG repeat size and stimulates translation of the CAG repeat expansion containing messenger RNA in a MID1-, protein phosphatase 2A- and mammalian target of rapamycin-dependent manner. Our data indicate that pathological CAG repeat expansions upregulate protein translation leading to an overproduction of aberrant protein and suggest that the MID1-com…

metabolism [Microtubule Proteins]General Physics and AstronomyHTT protein humanRibosomal s6 kinaseMice0302 clinical medicinemetabolism [Transcription Factors]Protein Phosphatase 2Luciferasesgenetics [Nerve Tissue Proteins]genetics [Protein Biosynthesis]0303 health sciencesHuntingtin ProteinMultidisciplinarybiologyTOR Serine-Threonine KinasesNuclear ProteinsTranslation (biology)3. Good healthmetabolism [Luciferases]Microtubule Proteinsddc:500metabolism [Nuclear Proteins]genetics [Trinucleotide Repeat Expansion]Protein Bindingcongenital hereditary and neonatal diseases and abnormalitiesMTOR protein humanUbiquitin-Protein LigasesBlotting WesternNerve Tissue Proteinsmetabolism [TOR Serine-Threonine Kinases]metabolism [RNA Messenger]General Biochemistry Genetics and Molecular Biology03 medical and health sciencesgenetics [RNA Messenger]mental disordersHuntingtin ProteinAnimalsHumansEukaryotic Small Ribosomal SubunitRNA MessengerNucleotide Motifs030304 developmental biologyMessenger RNAmetabolism [Nerve Tissue Proteins]RNAmetabolism [Protein Phosphatase 2]General ChemistryProtein phosphatase 2Molecular biologynervous system diseasesProtein Biosynthesisbiology.proteinTrinucleotide repeat expansionTrinucleotide Repeat Expansion030217 neurology & neurosurgeryMid1 protein humanHeLa CellsTranscription FactorsNature communications
researchProduct

Deregulated Splicing Is a Major Mechanism of RNA-Induced Toxicity in Huntington's Disease.

2019

Huntington's disease (HD) is caused by an expanded CAG repeat in the huntingtin (HTT) gene, translating into an elongated polyglutamine stretch. In addition to the neurotoxic mutant HTT protein, the mutant CAG repeat RNA can exert toxic functions by trapping RNA-binding proteins. While few examples of proteins that aberrantly bind to mutant HTT RNA and execute abnormal function in conjunction with the CAG repeat RNA have been described, an unbiased approach to identify the interactome of mutant HTT RNA is missing. Here, we describe the analysis of proteins that preferentially bind mutant HTT RNA using a mass spectrometry approach. We show that (I) the majority of proteins captured by mutant…

congenital hereditary and neonatal diseases and abnormalitiesSpliceosomeHuntingtinRNA SplicingMutantRNA-binding proteinRNA-binding proteinsBiologygenetics [Huntington Disease]Structural Biologymental disordersmedicineAnimalsHumansddc:610genetics [RNA]Molecular BiologyGeneHuntingtin Proteingenetics [Spliceosomes]CAG repeat RNANeurodegenerationneurodegenerationRNAgenetics [Huntingtin Protein]medicine.diseasenervous system diseasesCell biologypolyglutamine diseaseHuntington Diseasenervous systemCardiovascular and Metabolic DiseasesRNA splicingSpliceosomesgenetics [RNA Splicing]RNATechnology PlatformsspliceosomeJournal of molecular biology
researchProduct

The E3 Ubiquitin Ligase MID1 Catalyzes Ubiquitination and Cleavage of Fu

2014

Sonic Hedgehog (SHH)-GLI signalling plays an important role during embryogenesis and in tumorigenesis. The survival and growth of several types of cancer depend on autonomously activated SHH-GLI signalling. A protein complex containing the ubiquitin-ligase MID1 and protein phosphatase 2A (PP2A) regulates the nuclear localization and transcriptional activity of GLI3, a transcriptional effector molecule of SHH, in cancer cell lines with autonomously activated SHH signalling. However, the exact molecular mechanisms that mediate the interaction between MID1 and GLI3 remained unknown. Here, we show that MID1 catalyses the ubiquitination and proteasomal cleavage of the GLI3-regulator Fu. Our data…

metabolism [Microtubule Proteins]Ubiquitin-conjugating enzymeBiochemistrymetabolism [Protein Serine-Threonine Kinases]Ubiquitinmetabolism [Transcription Factors]Nuclear proteinSonic hedgehogbiologymetabolism [Protein-Serine-Threonine Kinases]Nuclear Proteinsrespiratory systemProtein-Serine-Threonine KinasesUbiquitin ligaseGene Expression Regulation NeoplasticGLI3 protein humanBiochemistryddc:540embryonic structuresMicrotubule Proteinsmetabolism [Hedgehog Proteins]Function and Dysfunction of the Nervous Systemmetabolism [Nuclear Proteins]Signal Transductionmetabolism [Kruppel-Like Transcription Factors]Proteasome Endopeptidase Complexanimal structuresSTK36 protein humanUbiquitin-Protein LigasesKruppel-Like Transcription FactorsNerve Tissue ProteinsProtein Serine-Threonine Kinaseschemistry [Ubiquitin-Protein Ligases]CatalysisZinc Finger Protein Gli3Cell Line TumorGLI3HumansHedgehog Proteinsmetabolism [Proteasome Endopeptidase Complex]metabolism [Cell Nucleus]Molecular Biologychemistry [Lysine]DNA PrimersCell Nucleusmetabolism [Nerve Tissue Proteins]UbiquitinLysineUbiquitinationCell BiologyProtein phosphatase 2chemistry [Ubiquitin]Proteasomebiology.proteinSHH protein humanhuman activitiesMid1 protein humanHeLa CellsTranscription FactorsJournal of Biological Chemistry
researchProduct