No-Till Soil Organic Carbon Sequestration Patterns as Affected by Climate and Soil Erosion in the Arable Land of Mediterranean Europe
No-tillage (NT) has been considered an agronomic tool to sequester soil organic carbon (SOC) and match the 4p1000 initiative requirements of conservative soil management. Recently, some doubts have emerged about the NT effect on SOC sequestration, often because observations and experimental data vary widely depending on climate and geographic characteristics. Therefore, a suitable SOC accounting method is needed that considers climate and morphology interactions. In this study, the yearly ratio between SOC in NT and conventional tillage (CT) (RRNT/CT) collected in a previous study for flat (96 samples) and sloping (44 samples) paired sites was used to map the overestimation of SOC sequestra…
Designing Trickle Irrigation Systems in Sloping Fields without Pressure-Compensating Emitters: Application of the IRRILAB Software
When designing trickle irrigation systems in sloped fields, the use of pressure-compensating (PC) emitters is generally preferred to ensure the emitter distribution uniformity regardless of the land topography and the variable operating pressures. However, the cost of PC emitters is generally higher than non-pressure-compensating (NPC) ones; moreover, the compensating membrane installed inside the emitters can lose elasticity due to the exposition to solar radiation, water quality, and chemical applications. Recently, the irrigation laboratory (IRRILAB) version 1.0 software application was developed to design microirrigation systems for rectangular and planar sectors when using NPC emitters…
Tapered drip laterals and manifolds in flat and rectangular irrigation units
Multiple-diameter laterals and manifolds reduce the total cost in microirrigation systems, however, the length of each sublateral should be determined carefully to assure appropriate performance and uniformity of emitter flow rates. The most accurate method is numerical trial and error, which is time-consuming. Many research efforts have been made to propose simple analytical design procedures. By using the power-law form of the Darcy-Weisbach formula, and equal emitters spacing for the sublaterals, Sadeghi et al. (2016) extended a previously introduced design solution for one-diameter laterals to tapered laterals. Recently, a simplified procedure to design dual-diameter drip laterals has b…