0000000000347779

AUTHOR

J. Carlos Trillo

showing 2 related works from this author

A fully adaptive multiresolution scheme for image processing

2007

A nonlinear multiresolution scheme within Harten's framework [A. Harten, Discrete multiresolution analysis and generalized wavelets, J. Appl. Numer. Math. 12 (1993) 153-192; A. Harten, Multiresolution representation of data II, SIAM J. Numer. Anal. 33 (3) (1996) 1205-1256] is presented. It is based on a centered piecewise polynomial interpolation fully adapted to discontinuities. Compression properties of the multiresolution scheme are studied on various numerical experiments on images.

Mathematics::Functional AnalysisPolynomialNumerical analysisMultiresolution analysisImage processingComputer Science ApplicationsPolynomial interpolationWaveletModelling and SimulationComputer Science::Computer Vision and Pattern RecognitionModeling and SimulationCompression (functional analysis)CalculusPiecewiseAlgorithmMathematicsMathematical and Computer Modelling
researchProduct

On specific stability bounds for linear multiresolution schemes based on piecewise polynomial Lagrange interpolation

2009

Abstract The Deslauriers–Dubuc symmetric interpolation process can be considered as an interpolatory prediction scheme within Harten's framework. In this paper we express the Deslauriers–Dubuc prediction operator as a combination of either second order or first order differences. Through a detailed analysis of certain contractivity properties, we arrive to specific l ∞ -stability bounds for the multiresolution transform. A variety of tests indicate that these l ∞ bounds are closer to numerical estimates than those obtained with other approaches.

PolynomialApplied MathematicsMathematical analysisLagrange polynomialStability (probability)Polynomial interpolationsymbols.namesakeOperator (computer programming)Piecewise Lagrange interpolationsymbolsPiecewiseStabilityLinear multiresolutionAnalysisNumerical stabilityInterpolationMathematicsJournal of Mathematical Analysis and Applications
researchProduct