0000000000348576
AUTHOR
Abeer D. Algarni
An Ensemble Model for Consumer Emotion Prediction Using EEG Signals for Neuromarketing Applications.
Traditional advertising techniques seek to govern the consumer’s opinion toward a product, which may not reflect their actual behavior at the time of purchase. It is probable that advertisers misjudge consumer behavior because predicted opinions do not always correspond to consumers’ actual purchase behaviors. Neuromarketing is the new paradigm of understanding customer buyer behavior and decision making, as well as the prediction of their gestures for product utilization through an unconscious process. Existing methods do not focus on effective preprocessing and classification techniques of electroencephalogram (EEG) signals, so in this study, an effective method for preprocessing and clas…
Malware Detection in Internet of Things (IoT) Devices Using Deep Learning
Internet of Things (IoT) devices usage is increasing exponentially with the spread of the internet. With the increasing capacity of data on IoT devices, these devices are becoming venerable to malware attacks; therefore, malware detection becomes an important issue in IoT devices. An effective, reliable, and time-efficient mechanism is required for the identification of sophisticated malware. Researchers have proposed multiple methods for malware detection in recent years, however, accurate detection remains a challenge. We propose a deep learning-based ensemble classification method for the detection of malware in IoT devices. It uses a three steps approach; in the first step, data is prep…
A Novel Optimization for GPU Mining Using Overclocking and Undervolting
Cryptography and associated technologies have existed for a long time. This field is advancing at a remarkable speed. Since the inception of its initial application, blockchain has come a long way. Bitcoin is a cryptocurrency based on blockchain, also known as distributed ledger technology (DLT). The most well-known cryptocurrency for everyday use is Bitcoin, which debuted in 2008. Its success ushered in a digital revolution, and it currently provides security, decentralization, and a reliable data transport and storage mechanism to various industries and companies. Governments and developing enterprises seeking a competitive edge have expressed interest in Bitcoin and other cryptocurrencie…
Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers
Coronary heart disease is one of the major causes of deaths around the globe. Predicating a heart disease is one of the most challenging tasks in the field of clinical data analysis. Machine learning (ML) is useful in diagnostic assistance in terms of decision making and prediction on the basis of the data produced by healthcare sector globally. We have also perceived ML techniques employed in the medical field of disease prediction. In this regard, numerous research studies have been shown on heart disease prediction using an ML classifier. In this paper, we used eleven ML classifiers to identify key features, which improved the predictability of heart disease. To introduce the prediction …