0000000000348739
AUTHOR
A. Haboucha
Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic
International audience; We report passive mode locking of a soliton erbium-doped double-clad fiber laser operating at the 322nd harmonic of the fundamental cavity frequency. Repetition rates up to 3 GHz have been obtained with pulses of 1 ps duration and 18 pJ of energy. The supermode suppression at the 322nd harmonic is better than 25 dB. In addition, the transition dynamics from a bunched state of pulses to stable harmonic mode locking is presented, revealing a very long time scale.
High Order Harmonic Passive Mode-Locking In Double-Clad Fiber Laser
We report passive mode-locking of a soliton erbium-doped double-clad fiber laser operating at the 322nd harmonic of the fundamental cavity frequency. Repetition rates scalable up to 3 GHz have been obtained with a pulse duration of about 1 ps and a pulse energy of about 18 pJ. The supermode suppression at the 322nd harmonic is better than 25 dB. The dynamics of emergence of this operating regime is also presented revealing a very long timescale.
Complexes and Molecules of Dissipative Solitons in Mode-Locked Lasers
Pulse-pulse interaction is a major issue in the development of high-repetition rate fiber laser sources or soliton-based optical transmission lines. The design of a suitable level of nonlinear dissipation, through nonlinear filters or saturable absorbers for instance, is able to improve significantly the stability of multiple pulse operation. The concept of a dissipative soliton has become an important tool for the exploration and the analysis of the multiple pulse dynamics, with mode-locked lasers and regenerated transmission lines as important applications [1,2]. Above all, the study of dissipative solitons has become a fertile area of nonlinear science with multidisciplinary implications…
322nd harmonic in the passively mode-locked erbium-doped double-clad fiber laser
International audience