0000000000349011
AUTHOR
Ileana L. Hanganu
Functional Synaptic Projections onto Subplate Neurons in Neonatal Rat Somatosensory Cortex
Subplate neurons (SPn) play an important role in the formation of thalamocortical connections during early development and show glutamatergic and GABAergic spontaneous synaptic activity. We characterized these synaptic inputs by performing whole-cell recordings from SPn in somatosensory cortical slices of postnatal day 0-3 rats. At -70 mV, electrical stimulation of the thalamocortical afferents elicited in 68% of the SPn a monosynaptic CNQX-sensitive postsynaptic current (PSC). These fast PSCs were mediated by AMPA receptors, because they were prolonged by cyclothiazide and blocked by GYKI 52466. On membrane depolarization, thalamocortical stimulation elicited in 50% of the cells an additio…
Rapid developmental switch in the mechanisms driving early cortical columnar networks
The immature cerebral cortex self-organizes into local neuronal clusters long before it is activated by patterned sensory inputs. In the cortical anlage of newborn mammals, neurons coassemble through electrical or chemical synapses either spontaneously or by activation of transmitter-gated receptors. The neuronal network and the cellular mechanisms underlying this cortical self-organization process during early development are not completely understood. Here we show in an intact in vitro preparation of the immature mouse cerebral cortex that neurons are functionally coupled in local clusters by means of propagating network oscillations in the beta frequency range. In the newborn mouse, this…
Oxygen and glucose deprivation induces major dysfunction in the somatosensory cortex of the newborn rat
The mechanisms and functional consequences of ischemia-induced injury during perinatal development are poorly understood. Subplate neurons (SPn) play a central role in early cortical development and a pathophysiological impairment of these neurons may have long-term detrimental effects on cortical function. The acute and long-term consequences of combined oxygen and glucose deprivation (OGD) were investigated in SPn and compared with OGD-induced dysfunction of immature layer V pyramidal cortical neurons (PCn) in somatosensory cortical slices from postnatal day (P)0-4 rats. OGD for 50 min followed by a 10-24-h period of normal oxygenation and glucose supply in vitro or in culture led to pron…
Cellular Mechanisms of Subplate-Driven and Cholinergic Input-Dependent Network Activity in the Neonatal Rat Somatosensory Cortex
Early coordinated network activity promotes the development of cortical structures. Although these early activity patterns have been recently characterized with respect to their developmental, spatial and dynamic properties, the cellular mechanisms by which specific neuronal populations trigger coordinated activity in the neonatal cerebral cortex are still poorly understood. Here we characterize the cellular and molecular processes leading to generation of network activity during early postnatal development. We show that the somatosensory cortex of newborn rats expresses cholinergic-driven calcium transients which are synchronized within the deeply located subplate. Correspondingly, endogen…
Cellular physiology of the neonatal rat cerebral cortex.
The early development of the cerebral cortex is characterized by neurogenesis, neuronal migration, cellular differentiation and programmed cell death. Cajal-Retzius cells, developing cortical plate neurons and subplate cells form a transient synaptic circuit which may serve as a template for the formation of cortical layers and columns. These three neuronal cell types show distinct electrophysiological properties and synaptic inputs. Endogenous or exogenous harmful disturbances during this developmental period may lead to the preservation of early cortical circuits, which may act as trigger zones for the initiation of pathophysiological activity.
Homogenous glycine receptor expression in cortical plate neurons and cajal-retzius cells of neonatal rat cerebral cortex
Glycinergic membrane responses have been described in cortical plate neurons (CPn) and Cajal-Retzius cells (CRc) during early neocortical development. In order to elucidate the functional properties and molecular identity of glycine receptors in these two neuronal cell types, we performed whole-cell patch-clamp recordings and subsequent single-cell multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) analyses on visually identified neurons in tangential and coronal slices as well as in situ hybridizations of coronal slices from neonatal rat cerebral cortex (postnatal days 0-4). In both CPn and CRc the glycinergic agonists glycine, beta-alanine and taurine induced inward curren…
Functional nicotinic acetylcholine receptors on subplate neurons in neonatal rat somatosensory cortex.
The establishment of cortical synaptic circuits during early development requires the presence of subplate neurons (SPn's), a heterogeneous population of neurons capable to integrate and process synaptic information from the thalamus, cortical plate, and neighboring SPn's. An accumulation of cholinergic afferents and nicotinic acetylcholine receptors (nAChRs) has been documentated in the subplate around birth. To assess the developmental role of the cholinergic innervation onto SPn's, we used whole cell patch-clamp recordings of visually identified and biocytin-labeled SPn's in neonatal rat somatosensory cortex. Functional nAChRs were present in 92% of the investigated SPn's. Activation of…
Glycine Receptors Mediate Excitation of Subplate Neurons in Neonatal Rat Cerebral Cortex
The development of the cerebral cortex depends on genetic factors and early electrical activity patterns that form immature neuronal networks. Subplate neurons (SPn) are involved in the construction of thalamocortical innervation, generation of oscillatory network activity, and in the proper formation of the cortical columnar architecture. Because glycine receptors play an important role during early corticogenesis, we analyzed the functional consequences of glycine receptor activation in visually identified SPn in neocortical slices from postnatal day 0 (P0) to P4 rats using whole cell and perforated patch-clamp recordings. In all SPn the glycinergic agonists glycine, β-alanine, and taurin…