0000000000349166

AUTHOR

Dahmane Achour

Lipschitz operator ideals and the approximation property

[EN] We establish the basics of the theory of Lipschitz operator ideals with the aim of recovering several classes of Lipschitz maps related to absolute summability that have been introduced in the literature in the last years. As an application we extend the notion and main results on the approximation property for Banach spaces to the case of metric spaces. (C) 2015 Elsevier Inc. All rights reserved.

research product

Factorization of absolutely continuous polynomials

In this paper we study the ideal of dominated (p,s)-continuous polynomials, that extend the nowadays well known ideal of p-dominated polynomials to the more general setting of the interpolated ideals of polynomials. We give the polynomial version of Pietsch s factorization Theorem for this new ideal. Our factorization theorem requires new techniques inspired in the theory of Banach lattices.

research product

Factorization of strongly (p,sigma)-continuous multilinear operators

We introduce the new ideal of strongly-continuous linear operators in order to study the adjoints of the -absolutely continuous linear operators. Starting from this ideal we build a new multi-ideal by using the composition method. We prove the corresponding Pietsch domination theorem and we present a representation of this multi-ideal by a tensor norm. A factorization theorem characterizing the corresponding multi-ideal - which is also new for the linear case - is given. When applied to the case of the Cohen strongly -summing operators, this result gives also a new factorization theorem.

research product

Domination spaces and factorization of linear and multilinear summing operators

[EN] It is well known that not every summability property for multilinear operators leads to a factorization theorem. In this paper we undertake a detailed study of factorization schemes for summing linear and nonlinear operators. Our aim is to integrate under the same theory a wide family of classes of mappings for which a Pietsch type factorization theorem holds. Our construction includes the cases of absolutely p-summing linear operators, (p, sigma)-absolutely continuous linear operators, factorable strongly p-summing multilinear operators, (p(1), ... , p(n))-dominated multilinear operators and dominated (p(1), ... , p(n); sigma)-continuous multilinear operators.

research product