0000000000349233

AUTHOR

David Grosso

showing 3 related works from this author

Enhanced nanoscopy of individual CsPbBr3 perovskite nanocrystals using dielectric sub-micrometric antennas

2020

We demonstrate an efficient, simple, and low-cost approach for enhanced nanoscopy in individual green emitting perovskite (CsPbBr3) nanocrystals via TiO2 dielectric nanoantenna. The observed three- to five-fold emission enhancement is attributed to near-field effects and emission steering promoted by the coupling between the perovskite nanocrystals and the dielectric sub-micrometric antennas. The dark-field scattering configuration is then exploited for surface-enhanced absorption measurements, showing a large increase in detection sensitivity, leading to the detection of individual nanocrystals. Due to the broadband spectral response of the Mie sub-micrometric antennas, the method can be e…

Detection sensitivityMaterials sciencelcsh:BiotechnologyCesium compoundsPhysics::Optics02 engineering and technologyDielectricPerovskiteLead compoundsperovskite solar cells01 natural sciences7. Clean energyCondensed Matter::Materials Sciencenanocrystalslcsh:TP248.13-248.650103 physical sciencesEnhanced absorptionSemiconductor quantum dotsElectronic transitionGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsAbsorption (electromagnetic radiation)perovskitePerovskite (structure)010302 applied physicsScatteringbusiness.industryGeneral Engineering021001 nanoscience & nanotechnologylcsh:QC1-999NanocrystalsNear field effectNanocrystalAtomic electron transitionQuantum dotOptoelectronicsTitanium dioxideAntennasDark-field scatteringsLow cost approachPhotonics0210 nano-technologybusinessOrganic moleculeslcsh:PhysicsBromine compoundsEmission enhancement
researchProduct

Preparation of multi-nanocrystalline transition metal oxide (TiO2–NiTiO3) mesoporous thin films

2005

Ordered mesoporous TiO2–NiTiO3 thin films, with nickel content x < 0.5, were prepared by dip-coating an acidic solution of hydrolysed transition metal chlorides in controlled humidity, followed by a very careful annealing treatment. These latter treatments were studied by in situ SAXS-WAXS experiments involving synchrotron radiation and TEM analysis. They revealed that the walls can be composed of amorphous, single crystalline or multi crystalline nanoparticles depending on x and the conditions applied during the thermal treatment.

ChemistryInorganic chemistryOxideNanoparticleGeneral ChemistryThermal treatmentCatalysisNanocrystalline materialAmorphous solidchemistry.chemical_compoundTransition metalMaterials ChemistryThin filmMesoporous materialNew J. Chem.
researchProduct

Studies on atomic layer deposition of MOF-5 thin films

2013

International audience; Deposition of MOF-5 thin films from vapor phase by atomic layer deposition (ALD) was studied at 225-350 degrees C. Zinc acetate (ZnAc2) and 1,4-benzenedicarboxylic acid (1,4-BDC) were used as the precursors. The resulting films were characterized by UV-Vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), optical microscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), time-of-flight elastic recoil detection analysis (TOF-ERDA), isopropanol adsorption tests, and nanoindentation. It was found out that the as-deposited films were amorphous but crystallized in humid conditions at room temperature. The crystalline films h…

Materials scienceAnalytical chemistry02 engineering and technologyChemical vapor deposition010402 general chemistry01 natural sciencesAtomic layer depositionGeneral Materials ScienceThin filmFourier transform infrared spectroscopyta116ta114General Chemistry[CHIM.MATE]Chemical Sciences/Material chemistryNanoindentationMetal-organic frameworks021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesAmorphous solidElastic recoil detectionCarbon filmMOF-5Mechanics of MaterialsALDHybrid materials0210 nano-technology
researchProduct