On the Fučík spectrum of the p-Laplacian with no-flux boundary condition
In this paper, we study the quasilinear elliptic problem \begin{align*} \begin{aligned} -\Delta_{p} u&= a\l(u^+\r)^{p-1}-b\l(u^-\r)^{p-1} \quad && \text{in } \Omega,\\ u & = \text{constant} &&\text{on } \partial\Omega,\\ 0&=\int_{\partial \Omega}\left|\nabla u\right|^{p-2}\nabla u\cdot \nu \,\diff \sigma,&& \end{aligned} \end{align*} where the operator is the $p$-Laplacian and the boundary condition is of type no-flux. In particular, we consider the Fu\v{c}\'{\i}k spectrum of the $p$-Laplacian with no-flux boundary condition which is defined as the set $\fucik$ of all pairs $(a,b)\in\R^2$ such that the problem above has a nontrivial solution. It turns out…
Bounded weak solutions to superlinear Dirichlet double phase problems
AbstractIn this paper we study a Dirichlet double phase problem with a parametric superlinear right-hand side that has subcritical growth. Under very general assumptions on the data, we prove the existence of at least two nontrivial bounded weak solutions to such problem by using variational methods and critical point theory. In contrast to other works we do not need to suppose the Ambrosetti–Rabinowitz condition.