0000000000349582

AUTHOR

Laura Russotto

showing 2 related works from this author

Differentiation and characterization of rat adipose tissue mesenchymal stem cells into endothelial-like cells

2018

In this study, mesenchymal stem cells were isolated from rat adipose tissue (AD-MSCs) to characterize and differentiate them into endothelial-like cells. AD-MSCs were isolated by mechanical and enzymatic treatments, and their identity was verified by colony-forming units (CFU) test and by differentiation into cells of mesodermal lineages. The endothelial differentiation was induced by plating another aliquot of cells in EGM-2 medium, enriched with specific endothelial growth factors. Five subcultures were performed. The expression of stemness genes (OCT4, SOX2 and NANOG) was investigated. The presence of CD90 and the absence of the CD45 were evaluated by flow cytometry. The endothelial-like…

0301 basic medicineCellular differentiationSettore VET/09 - Clinica Chirurgica VeterinariaSettore BIO/13 - Biologia Applicataimmunophenotypical analysiCell DifferentiationNanog Homeobox ProteinGeneral MedicineCadherinsFlow CytometryUp-RegulationPlatelet Endothelial Cell Adhesion Molecule-1Endothelial stem cellDrug CombinationsAdipose Tissueembryonic structuresVeterinary (all)ProteoglycansCollagenStem cellHomeobox protein NANOGadipose-derived mesenchymal stem cellDown-RegulationCD146 AntigenBiology03 medical and health sciencesMatrigel assaySOX2Antigens CDAdipose-derived mesenchymal stem cellsAnimalsEndothelial cells differentiationRats WistarImmunophenotypical analysisMatrigelGeneral VeterinaryGene Expression ProfilingSOXB1 Transcription FactorsMesenchymal stem cellEndothelial CellsMesenchymal Stem Cells3T3-L1Molecular biologyAdipose-derived mesenchymal stem cells; Endothelial cells differentiation; Gene expression; Immunophenotypical analysis; Matrigel assay; Rat; Veterinary (all)Culture MediaRats030104 developmental biologyadipose-derived mesenchymal stem cells; endothelial cells differentiation; gene expression; immunophenotypical analysis; matrigel assay; ratLeukocyte Common AntigensThy-1 AntigensRatLamininGene expressionOctamer Transcription Factor-3
researchProduct

In Vitro Biocompatibility Evaluation of Nine Dermal Fillers on L929 Cell Line

2020

Objective. Biomaterial research for soft tissue augmentation is an increasing topic in aesthetic medicine. Hyaluronic acid (HA) fillers are widely used for their low invasiveness and easy application to correct aesthetic defects or traumatic injuries. Some complications as acute or chronic inflammation can occur in patients following the injection. Biocompatibility assays are required for medical devices intended for human use, in order to prevent damages or injuries in the host. In this study, nine HA fillers were tested in order to evaluate their cytotoxicity and their effects on L929 cell line, according to the UNI EN ISO 10993 regulation. Methods. Extracts were prepared from nine HA fil…

0301 basic medicineBiocompatibilityArticle SubjectCell SurvivalBiocompatible Materials02 engineering and technologyCosmetic TechniquesPharmacologyengineering.materialDermal FillersGeneral Biochemistry Genetics and Molecular BiologyCell Line03 medical and health scienceschemistry.chemical_compoundMiceIn vivoFiller (materials)Dermal FillersHyaluronic acidMaterials TestingMedicineAnimalsViability assayCytotoxicityGeneral Immunology and Microbiologybusiness.industryRBiomaterialGeneral Medicine021001 nanoscience & nanotechnology030104 developmental biologychemistryengineeringMedicine0210 nano-technologybusinessResearch ArticleBioMed Research International
researchProduct