0000000000349878

AUTHOR

Antonietta Coppola

showing 2 related works from this author

Clinical Significance of Rare Copy Number Variations in Epilepsy A Case-Control Survey Using Microarray-Based Comparative Genomic Hybridization

2012

Objective To perform an extensive search for genomic rearrangements by microarray-based comparative genomic hybridization in patients with epilepsy. Design Prospective cohort study. Setting Epilepsy centers in Italy. Patients Two hundred seventy-nine patients with unexplained epilepsy, 265 individuals with nonsyndromic mental retardation but no epilepsy, and 246 healthy control subjects were screened by microarray-based comparative genomic hybridization. Main Outcomes Measures Identification of copy number variations (CNVs) and gene enrichment. Results Rare CNVs occurred in 26 patients (9.3%) and 16 healthy control subjects (6.5%) (P = .26). The CNVs identified in patients were larger (P = …

MaleOncologyendocrine system diseasesMicroarrayGene DosagePreschool Cohort Studies Computational Biology Diagnostic and Statistical Manual of Mental Disorders EpilepsyBioinformaticsPolymerase Chain ReactionFluorescence Intellectual DisabilityCohort StudiesEpilepsySettore MED/38 - Pediatria Generale E SpecialisticaGene DuplicationProspective StudiesCopy-number variationAge of OnsetChildProspective cohort studyIn Situ Hybridization Fluorescenceepidemiology/genetics Nucleic Acid Hybridization Polymerase Chain Reaction Prospective Studies Young AdultGene RearrangementNucleic Acid HybridizationMiddle AgedControl subjectsMagnetic Resonance ImagingDiagnostic and Statistical Manual of Mental Disordersgenetics Female Gene Deletion Gene Dosage Gene Duplication Gene Rearrangement Genome-Wide Association Study Humans In Situ HybridizationItalyRare Copy Number Variations EpilepsyChild PreschoolFemaleepidemiology/genetics ItalyAdultmedicine.medical_specialtyAdolescentBiologyYoung AdultAdolescent Adult Age of Onset Aged Child ChildArts and Humanities (miscellaneous)Intellectual DisabilityInternal medicinemental disordersmedicineHumansIn patientClinical significanceepidemiology Magnetic Resonance Imaging Male Microarray Analysis Middle Aged Nervous System DiseaseAgedEpilepsyComputational BiologyMicroarray Analysismedicine.diseaseSettore MED/03 - Genetica MedicaNeurology (clinical)Nervous System DiseasesGene DeletionGenome-Wide Association StudyComparative genomic hybridization
researchProduct

De novo SMARCA2 variants clustered outside the helicase domain cause a new recognizable syndrome with intellectual disability and blepharophimosis di…

2020

International audience; Purpose: Nontruncating variants in SMARCA2, encoding a catalytic subunit of SWI/SNF chromatin remodeling complex, cause Nicolaides-Baraitser syndrome (NCBRS), a condition with intellectual disability and multiple congenital anomalies. Other disorders due to SMARCA2 are unknown.Methods: By next-generation sequencing, we identified candidate variants in SMARCA2 in 20 individuals from 18 families with a syndromic neurodevelopmental disorder not consistent with NCBRS. To stratify variant interpretation, we functionally analyzed SMARCA2 variants in yeasts and performed transcriptomic and genome methylation analyses on blood leukocytes.Results: Of 20 individuals, 14 showed…

Foot DeformitiesFoot Deformities Congenital[SDV]Life Sciences [q-bio]BiologyBlepharophimosisSettore MED/03 - GENETICA MEDICAHypotrichosisChromatin remodeling03 medical and health sciencesCongenital0302 clinical medicineNeurodevelopmental disorderIntellectual DisabilityIntellectual disabilitySMARCA2medicineHumansGeneGenetics (clinical)030304 developmental biologyGenetics0303 health sciencesBISFaciesmedicine.diseaseBlepharophimosisPhenotypeneurodevelopmental disorderPhenotypeNicolaides–Baraitser syndromeintellectual disabilityDNA methylationNicolaides–Baraitser syndrome030217 neurology & neurosurgeryTranscription FactorsGenetics in medicine : official journal of the American College of Medical Genetics
researchProduct