0000000000350082

AUTHOR

Celia Rogero

Boosting background suppression in the NEXT experiment through Richardson-Lucy deconvolution

The NEXT collaboration: et al.

research product

Superconductor-ferromagnet hybrids for non-reciprocal electronics and detectors

We review the use of hybrid thin films of superconductors and ferromagnets for creating non-reciprocal electronic components and self-biased detectors of electromagnetic radiation. We start by introducing the theory behind these effects, as well as different possible materials that can be used in the fabrication of these components. We proceed by discussing in detail the fabrication and characterization of Al/EuS/Cu and EuS/Al/Co based detectors, along with their noise analysis. We also indicate some routes for multiplexing such self-biased detectors.

research product

Coexistence of superconductivity and spin-splitting fields in superconductor/ferromagnetic insulator bilayers of arbitrary thickness

Ferromagnetic insulators (FI) can induce a strong exchange field in an adjacent superconductor (S) via the magnetic proximity effect. This manifests as spin splitting of the BCS density of states of the superconductor, an important ingredient for numerous superconducting spintronics applications and the realization of Majorana fermions. A crucial parameter that determines the magnitude of the induced spin splitting in FI/S bilayers is the thickness of the S layer d: In very thin samples, the superconductivity is suppressed by the strong magnetism. By contrast, in very thick samples, the spin splitting is absent at distances away from the interface. In this work, we calculate the density of …

research product

Superconducting spintronic tunnel diode

Diodes are key elements for electronics, optics, and detection. Their evolution towards low dissipation electronics has seen the hybridization with superconductors and the realization of supercurrent diodes with zero resistance in only one direction. Here, we present the quasi-particle counterpart, a superconducting tunnel diode with zero conductance in only one direction. The direction-selective propagation of the charge has been obtained through the broken electron-hole symmetry induced by the spin selection of the ferromagnetic tunnel barrier: a EuS thin film separating a superconducting Al and a normal metal Cu layer. The Cu/EuS/Al tunnel junction achieves a large rectification (up to ∼…

research product

Role of Deprotonation and Cu Adatom Migration in Determining the Reaction Pathways of Oxalic Acid Adsorption on Cu(111)

Scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and first principles theoretical calculations have been used to gain insight into the fundamental processes involved in the adsorption and self-assembly of oxalic acid on Cu(111). The experimental data demonstrate that several reaction pathways are involved in the chemisorption of oxalic acid on Cu(111), one of which leads to deprotonation of the acid into oxalate molecules that form ordered structures on the surface. Theoretical calculations indicate that the adsorption of oxalate molecules is not stable on the surface unless copper adatoms are taken into consideration. Coordination with copper adatoms prevents ox…

research product

Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches

The NEXT collaboration: et al.

research product