0000000000350119

AUTHOR

Reza Khatibi

showing 7 related works from this author

Graphene oxide-silica nanohybrids as fillers for PA6 based nanocomposites

2014

Graphene oxide (GO) was prepared by oxidation of graphite flakes by a mixture of H2SO4/H3PO4 and KMnO4 based on Marcano's method. Two different masterbatches containing GO (33.3%) and polyamide-6 (PA6) (66.7%) were prepared both via solvent casting in formic acid and by melt mixing in a mini-extruder (Haake). The two masterbatches were then used to prepare PA6-based nanocomposites with a content of 2% in GO. For comparison, a nanocomposite by direct mixing of PA6 and GO (2%) and PA6/graphite nanocomposites were prepared, too. The oxidation of graphite into GO was assessed by X-ray diffraction (XRD), Micro-Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectrosco…

Materials scienceNanocompositeScanning electron microscopeGrapheneOxideAnalytical chemistryNanoparticleCastinglaw.inventionchemistry.chemical_compoundChemical engineeringX-ray photoelectron spectroscopychemistrylawgraphene oxide silica nanohybrids PA6GraphiteAIP Conference Proceedings
researchProduct

A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids

2016

International audience; In the present study, the possibility to synthesize graphene oxide (GO)-based nanohybrids with pure and O2-doped silica nanoparticles by a rapid and easy hydrothermal process has been explored. The nanohybrids were prepared by varying the type of silica nanoparticles (average diameter 7 nm or 40 nm) and the silica/GO weight ratio. All the materials were fully characterized by spectroscopic and morphological techniques.The experimental results revealed that it is possible to tune the characteristics of the obtained nanohybrids, such as morphology and amount of ester/ether linkages upon varying the preparation parameters, together with the nanosilica's typology and the…

Morphology (linguistics)Materials scienceOxideNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesHydrothermal circulation[SPI.MAT]Engineering Sciences [physics]/Materialslaw.inventionchemistry.chemical_compoundlawXPSMaterials ChemistryNanosilicaThermal stabilityGraphene oxideGrapheneMechanical EngineeringDopingMetals and Alloys021001 nanoscience & nanotechnology0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsAgglomerateRaman spectroscopyNanohybridSurface modification0210 nano-technologyJournal of Alloys and Compounds
researchProduct

A novel approach to prevent graphene oxide re-aggregation during the melt compounding with polymers

2015

Abstract The technology for the preparation of polymer-GO nanocomposites was investigated by studying the structure-properties relationships of two different systems, based on PA6 and EVA, fabricated by using different preparation methods, i.e. melt mixing, wet phase inversion, and the combination of the two. The morphology of nanocomposites resulted dramatically influenced by the technique adopted and showed to be the critical variable affecting the physical properties of the materials. Finally, the mechanical and dynamic-mechanical of the nanocomposites were improved by using the hybrid technique combining the two procedures.

Dynamic mechanical thermal analysis (DMTA); Graphene; Interphase; Polymer-matrix composites (PMCs); Raman spectroscopy; Engineering (all); Ceramics and CompositesPolymer-matrix composites (PMCs)Materials scienceOxidelaw.inventionchemistry.chemical_compoundsymbols.namesakeEngineering (all)lawComposite materialInterphasechemistry.chemical_classificationDynamic mechanical thermal analysis (DMTA)NanocompositeMelt mixingGrapheneGeneral EngineeringPolymerSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryCompoundingRaman spectroscopyCeramics and CompositessymbolsGrapheneRaman spectroscopyPhase inversionComposites Science and Technology
researchProduct

IMPROVED STABILITY OF GRAPHENE OXIDE-SILICA NANOHYBRIDS AND RELATED POLYMER-BASED NANOCOMPOSITES

2014

Although its promising properties make the graphene oxide (GO) very interesting as filler for polymer matrices, some problems related to its thermal stability in the region which ranges from 80 to 200 °C, are crucial for the possibility to melt process GO together with practically all the polymers [1,2]. Moreover, above 100 °C GO lamellae were found to become stacked. In this work, two different ways to preserve the GO structure and ensure its dispersion within different polymer matrices have been investigated and schematized in Fig. 1. Exfoliation plays a key-role in the achievement of good mechanical properties since it preserves the GO from both stacking phenomena. The capability of sili…

graphene oxide nanosilica nanohybrids thermal treatment melt processing.
researchProduct

Effetto della preparativa sulle proprietà di nanocompositi a base di ossido di grafene

2014

Nanocompositi ossido di grafene poliammide 6
researchProduct

PREPARATION OF MULTIFUNCTIONAL NANO-STRUCTURED POLYMER NANOHYBRIDS CONTAINING CARBON COMPOUNDS

nanocomposites polyamide graphene oxide
researchProduct

PHOTO-OXIDATION OF PA6/GRAPHENE OXIDE FILMS

2014

Graphene oxide (GrO) was synthesized with Marcano’s method [1] and added at 0.5 and 1 wt% loading content to a polyamide 6 (PA6). In particular, three different techniques have been used for the preparation of the nanocomposites: (i) melt blending in a batch mixer, (ii) solvent casting in formic acid, (iii) preparation of a masterbatch by solvent casting and further melt processing. The films (80 m) were photo-oxidized in a QU-V chamber up to about 100 hours. The effect of filler content and preparation technique on the photo-stability of the nanocomposites has been followed by monitoring the change of the mechanical and spectroscopic properties undergone upon artificial exposure to UV-B l…

Photo-oxidation nanocomposites graphene oxide PA6
researchProduct