6533b7dbfe1ef96bd1271592
RESEARCH PRODUCT
A rapid and eco-friendly route to synthesize graphene-doped silica nanohybrids
Antonino AlessiAntonino AlessiAlessio MezziGianpiero BuscarinoAndrea MaioReza KhatibiAurora PiazzaSimonpietro AgnelloLuigi BottaGiuseppe PantaleoRoberto Scaffarosubject
Morphology (linguistics)Materials scienceOxideNanotechnology02 engineering and technology010402 general chemistry01 natural sciencesHydrothermal circulation[SPI.MAT]Engineering Sciences [physics]/Materialslaw.inventionchemistry.chemical_compoundlawXPSMaterials ChemistryNanosilicaThermal stabilityGraphene oxideGrapheneMechanical EngineeringDopingMetals and Alloys021001 nanoscience & nanotechnology0104 chemical sciencesSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryMechanics of MaterialsAgglomerateRaman spectroscopyNanohybridSurface modification0210 nano-technologydescription
International audience; In the present study, the possibility to synthesize graphene oxide (GO)-based nanohybrids with pure and O2-doped silica nanoparticles by a rapid and easy hydrothermal process has been explored. The nanohybrids were prepared by varying the type of silica nanoparticles (average diameter 7 nm or 40 nm) and the silica/GO weight ratio. All the materials were fully characterized by spectroscopic and morphological techniques.The experimental results revealed that it is possible to tune the characteristics of the obtained nanohybrids, such as morphology and amount of ester/ether linkages upon varying the preparation parameters, together with the nanosilica's typology and the silica to GO ratio. By Fischer esterification it was possible to achieve GO-silica nanohybrid lamellae to be then reduced into nanostructured films by a hydrothermal process. These latter materials show a “lasagna-like” structure in which it is possible to observe fully exfoliated (and partially reduced) GO lamellae intercalated by silica nanoparticles agglomerates. The extension of silica layers, film morphology and structure, degree of functionalization, and thermal stability are strongly affected by the type of silica. Furthermore, after the hydrothermal treatment, the nanohybrids were found to be insoluble in water.
year | journal | country | edition | language |
---|---|---|---|---|
2016-04-01 | Journal of Alloys and Compounds |