Dysbiosis in marine aquaculture revealed through microbiome analysis: reverse ecology for environmental sustainability
AbstractThe increasing demand for products for human consumption is leading to the fast-growing expansion of numerous food sectors such as marine aquaculture (mariculture). However, excessive input of nutrients and pollutants modifies marine ecosystems. Here, we applied a metagenomic approach to investigate these perturbations in samples from marine farms of gilthead seabream cultures. Results revealed dysbiosis and functional imbalance within the net cage with a unique structure, with little interference with samples from the fish microbiota or those collected far away from the coast. Remarkably, below the cage the prokaryotic community was highly similar to the marine microbiome of photic…