Optimized Kernel Entropy Components
This work addresses two main issues of the standard Kernel Entropy Component Analysis (KECA) algorithm: the optimization of the kernel decomposition and the optimization of the Gaussian kernel parameter. KECA roughly reduces to a sorting of the importance of kernel eigenvectors by entropy instead of by variance as in Kernel Principal Components Analysis. In this work, we propose an extension of the KECA method, named Optimized KECA (OKECA), that directly extracts the optimal features retaining most of the data entropy by means of compacting the information in very few features (often in just one or two). The proposed method produces features which have higher expressive power. In particular…