0000000000350700

AUTHOR

P. Koehler

showing 7 related works from this author

GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF

2014

The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has beeni mplemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with anatC sample, showing an excellent agreement above 1 keV. At lower energies, an additional compo…

Neutron captureNuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaGEANT4 simulations; Neutron time of flight; Neutron background; n_TOF; Neutron captureFOS: Physical sciencesNeutronN-TOF7. Clean energy01 natural sciencesPartícules (Física nuclear)Nuclear physicsCross section (physics)0103 physical sciencesNeutronNuclear Experiment (nucl-ex)010306 general physicsGEANT4 simulations;N-TOF;Neutron time of flight;Neutron capture;Neutron backgroundNuclear ExperimentInstrumentationphysics.ins-detNuclear ExperimentGEANT4Line (formation)Particles (Nuclear physics)PhysicsBonner sphere:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsGEANT4 simulation:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsDetectorFísicaNeutron sensitivityDetectorInstrumentation and Detectors (physics.ins-det)Neutron radiationNEUTRON TIME OF FLIGHTNeutron captureBackgroundDeuteriumN_TOFGEANT4 simulationsNeutron backgroundSimulation
researchProduct

Neutron-skin thickness of 208Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

2013

The $^{208}$Pb($p$,$n\gamma\bar p$) $^{207}$Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its $\gamma$-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness ($\Delta R_{pn}$). By comparing the theoretical results with the measured transition energy, the value of 0.190 $\pm$ 0.028 fm has been determined for $\Delta R_{pn}$ of $^{208}$Pb, in agreement with previous experiment…

Nuclear Theory (nucl-th)[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th][PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theory[PHYS.NEXP] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear TheoryFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

Neutron measurements for advanced nuclear systems: The n_TOF project at CERN

2012

A few years ago, the neutron time-of-flight facility n_TOF was built at CERN to address some of the urgent needs of high-accuracy nuclear data for Accelerator Driven Systems and other advanced nuclear energy systems, as well as for nuclear astrophysics and fundamental nuclear physics. Thanks to the characteristics of the neutron beam, and to state-of-the-art detection and acquisition systems, high quality neutron cross-section data have been obtained for a variety of isotopes, many of which radioactive. Following an important upgrade of the spallation target and of the experimental area, a new measurement campaign has started last year. After a brief review of the most important results obt…

Nuclear and High Energy PhysicsAstrofísica nuclearNuclear engineeringNuclear Theory[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physics0103 physical sciencesNuclear astrophysicsSpallationNeutron010306 general physicsNuclear ExperimentInstrumentationPhysics:Energies::Energia nuclear [Àrees temàtiques de la UPC]NeutronsLarge Hadron Collider:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsNuclear fissionNuclear dataNeutron radiationNuclear technologyEnergia nuclearPhysics::Accelerator PhysicsFísica nuclearSpallation Neutron Source
researchProduct

Performance of existing definitions and tests for the diagnosis of invasive aspergillosis in critically ill, non-neutropenic, adult patients: An upda…

2022

Microbiology (medical)AdultInvasive Pulmonary AspergillosisIntensive Care UnitsAspergillusInfectious DiseasesCOVID-19 TestingCritical IllnessAspergillosisCOVID-19HumansSettore MED/07 - MICROBIOLOGIA E MICROBIOLOGIA CLINICAInvasive Fungal InfectionsThe Journal of infection
researchProduct

Measurement of the n-TOF beam profile with a micromegas detector

2004

A Micromegas detector was used in the neutron Time-Of-Flight (n_TOF) facility at CERN to evaluate the spatial distribution of the neutron beam as a function of its kinetic energy. This was achieved over a large range of neutron energies by using two complementary processes: at low energy by capture of a neutron via the 6Li(n,[alpha])t reaction, and at high energy by elastic scattering of neutrons on gas nuclei (argon+isobutane or helium+isobutane). Data are compared to Monte Carlo simulations and an analytic function fitting the beam profile has been calculated with a sufficient precision to use in neutron capture experiments at the n_TOF facility. http://www.sciencedirect.com/science/artic…

Elastic scatteringPhysicsNuclear and High Energy PhysicsArgonPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaBeam profileNuclear Theorychemistry.chemical_elementMicroMegas detectorNUCLEAR PHYSICSNeutron radiationNuclear physicsNeutron capturechemistryNEUTRON BEAMSNeutron cross sectionMICROMEGAS DETECTORNeutron detectionNeutron beam profilerNeutronNuclear ExperimentInstrumentationMicromegas
researchProduct

The 236U neutron capture cross-section measured at the n TOF CERN facility

2016

International audience; The $^{236}$U isotope plays an important role in nuclear systems, both for future and currently operating ones. The actual knowledge of the capture reaction of this isotope is satisfactory in the thermal region, but it is considered insufficient for Fast Reactor and ADS applications. For this reason the $^{236} \text{U}(n, \gamma)$ reaction cross-section has been measured for the first time in the whole energy region from thermal energy up to 1 MeV at the n_TOF facility with two different detection systems: an array of C$_6$D$_6$ detectors, employing the total energy deposited method, and a 4$\pi$ total absorption calorimeter (TAC), made of 40 BaF$_2$ crystals. The t…

Nuclear reactionnTOFQC1-999Neutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyNuclear physicsPhysics and Astronomy (all)Cross section (physics)0103 physical sciencesCERNNeutron cross sectionNuclear Physics - Experimentddc:530Neutron010306 general physicsAbsorption (electromagnetic radiation)PhysicsNeutrons:Energies::Energia nuclear [Àrees temàtiques de la UPC]IsotopeCross sectionReaccions nuclears:Física [Àrees temàtiques de la UPC]010308 nuclear & particles physicsPhysicsResonanceNuclear reactionCalorimeter13. Climate actionNuclear reactions
researchProduct

Experimental neutron capture data of 58Ni from the CERN n_TOF facility

2014

The $^{58}$Ni $(n,\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\pm$0.6$_\mathrm{stat}\pm$1.8$_\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When in…

Nuclear and High Energy PhysicsnTOFAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesNEUTRON RESONANCE ANALYSISNeutron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsTime of flight58Ni neutron capture cross section; n_TOF; MACS0103 physical sciencesNeutron cross section:Física::Electromagnetisme [Àrees temàtiques de la UPC]Nuclear Physics - ExperimentNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsNeutronsLarge Hadron ColliderCross section010308 nuclear & particles physicsCERN - n_TOFResonanceFísicaNEUTRON TIME OF FLIGHTNeutron temperatureTime of flightNeutron captureNeutrons CaptureS PROCESSs-process
researchProduct