0000000000351749

AUTHOR

P. Camarda

showing 13 related works from this author

Effect of thermal annealing on the luminescence of defective ZnO nanoparticles synthesized by pulsed laser ablation in water

2016

This work concerns ZnO nanoparticles (NPs), with sizes of tens of nm, produced by ablation with a pulsed Nd:YAG laser of a Zn plate in H2O. TEM images evidence the formation of nanoparticles with sizes of tens of nm. Moreover, HRTEM images and Raman spectra show that the distance between the crystalline planes and the vibrational modes are consistent with ZnO nanocrystal in wurtzite structure. Their optical properties are characterized by two emission bands both excited above the energy gap (3.4 eV): the first at 3.3 eV is associated with excitons recombination, the second at 2.2 eV is proposed to originate from a singly ionized oxygen vacancy. The green emission is independent of water pH,…

thermal annealingMaterials scienceLaser ablationPhotoluminescenceZnO nanoparticleBand gapAnalytical chemistryNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencessymbols.namesakeNanocrystalsymbolslaser ablationoxygen vacanciephotoluminescence0210 nano-technologyHigh-resolution transmission electron microscopyRaman spectroscopyLuminescenceWurtzite crystal structure
researchProduct

Synthesis of multi-color luminescent ZnO nanoparticles by ultra-short pulsed laser ablation

2020

Abstract Crystalline ZnO nanoparticles (NPs) are synthesized by ultra-short femtosecond (fs) pulsed laser ablation (PLA) of a zinc plate in deionized water, and are investigated by optical absorption and time resolved luminescence spectra in combination with the morphology and structure analysis. The comparison with previous experiments based on short nanosecond (ns) PLA highlights that pulse duration is a crucial parameter to determine the size and the optical properties of ZnO NPs. While short PLA generates NPs with average size S ‾ of ~ 30 nm, ultrashort PLA allows to achieve much smaller NPs, S ‾ ⩽ 10  nm, that evidence weak quantum confinement effects on both the absorption edge and th…

Materials sciencePhotoluminescenceUltrashort pulsed laser ablationZnO nanoparticlesExcitonGeneral Physics and Astronomy02 engineering and technology010402 general chemistry01 natural sciencesAtomic force microscopyAbsorption (electromagnetic radiation)Time resolved luminescencebusiness.industryQuantum confinement effectsSurfaces and InterfacesGeneral ChemistryNanosecond021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesSurfaces Coatings and FilmsAbsorption edgeQuantum dotFemtosecondOptoelectronics0210 nano-technologyLuminescencebusinessTransmission electron microscopyApplied Surface Science
researchProduct

Carotid intimal-media thickness and endothelial function in young patients with history of myocardial infarction

2009

AIM: The aim of the study was to evaluate the prevalence of carotid atherosclerosis and endothelial dysfunction in 45 young patients (38 mens and 7 females) with myocardial infarction (MI), age 29-45, mean age 42+/-3 years, to verify its possible role as a marker of coronary atherosclerosis. METHODS: Vascular echography was performed to verify the presence of carotid atherosclerosis and/or endothelial dysfunction in 45 young patients with MI and in 45 healthy control subjects well matched for age and sex. RESULTS: We observed a normal intima media thickness (IMT) only in 30% of patients with juvenile myocardial infarction (JMI) compared with 66% in the control group (P<0.0001) and 34% of pa…

carotid atherosclerosis; juvenile myocardial infarction; endothelial function; atherosclerosis.endothelial functionatherosclerosis.juvenile myocardial infarctionSettore MED/11 - Malattie Dell'Apparato Cardiovascolarecarotid atherosclerosi
researchProduct

Oxidation of silicon nanoparticles produced by nanosecond laser ablation in liquids

2014

We investigated nanoparticles produced by laser ablation of silicon in water by the fundamental harmonic (1064 nm) of a ns pulsed Nd:YAG. The silicon oxidation is evidenced by IR absorption features characteristic of amorphous SiO2 (silica). This oxide is highly defective and manifests a luminescence activity under UV excitation: two emission bands at 2.7 eV and 4.4 eV are associated with the twofold coordinated silicon, =SiO••.

Materials scienceLaser ablationSiliconmedicine.medical_treatmenttechnology industry and agricultureAnalytical chemistryOxideNanoparticlechemistry.chemical_elementequipment and suppliesAblationPhotochemistryAmorphous solidchemistry.chemical_compoundchemistrymedicineLuminescenceExcitationAIP Conference Proceedings
researchProduct

Oxidation of Zn nanoparticles probed by online optical spectroscopy during nanosecond pulsed laser ablation of a Zn plate in H2O

2015

We report online UV-Visible absorption and photoluminescence measurements carried out during and after pulsed laser ablation of a zinc plate in water, which clarify the events leading to the generation of ZnO nanoparticles. A transient Zn/ZnO core-shell structure is revealed by the coexistence of the resonance absorption peak around 5.0 eV due to Zn surface plasmon resonance and the edge at 3.5 eV of ZnO. The growth kinetics of ZnO, selectively probed by the exciton luminescence at 3.3 eV, begins only after a ∼30 s delay from the onset of laser ablation. We also detect the luminescence at 2.3 eV of ZnO oxygen vacancies, yet rising with an even longer delay (∼100 s). These results show that …

PhotoluminescenceMaterials scienceLaser ablationPhysics and Astronomy (miscellaneous)chemistryAnalytical chemistryNanoparticlechemistry.chemical_elementZincSurface plasmon resonanceLuminescenceAbsorption (electromagnetic radiation)SpectroscopyApplied Physics Letters
researchProduct

Luminescence Efficiency of Si/SiO 2 Nanoparticles Produced by Laser Ablation

2019

Photoluminescence properties of Si(core)/SiO 2 (shell) nanoparticles produced by pulsed laser ablation in aqueous solution are investigated with the purpose to highlight the microscopic processes that govern the emission brightness and stability. Time resolved spectra evidence that these systems emit a µs decaying band centered around 1.95 eV, that is associated with the radiative recombination of quantum-confined excitons generated in the Si nanocrystalline core. Both the quantum efficiency and the stability of this emission are strongly dependent on the pH level of the solution, that is changed after the laser ablation is performed. They enhance in acid environment because of the H + pass…

PhotoluminescenceLaser ablationMaterials scienceSi/SiO2 nanoparticles pulsed laser ablation quantum confinement luminescence IR absorption pH dependencebusiness.industry2Surfaces and InterfacesCondensed Matter Physicslaser ablation; pH dependence; photoluminescence; quantum confinement; Si/SiO ; 2; nanoparticlesquantum confinementSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsQuantum dotSio2 nanoparticleslaser ablationMaterials ChemistryPh dependenceOptoelectronicsphotoluminescencenanoparticlespH dependenceElectrical and Electronic EngineeringLuminescencebusinessSi/SiOphysica status solidi (a)
researchProduct

Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ions

2018

The emission of silicon nanocrystals (Si-NCs), synthesized by pulsed laser ablation in water, was investigated on varying the pH of the solution. These samples emit μs decaying orange photoluminescence (PL) associated with radiative recombination of quantum-confined excitons. Time-resolved spectra reveal that both the PL intensity and the lifetime increase by a factor of ∼20 when the pH decreases from 10 to 1 thus indicating that the emission quantum efficiency increases by inhibiting nonradiative decay rates. Infrared (IR) absorption and electron paramagnetic resonance (EPR) experiments allow addressing the origin of defects on which the excitons nonradiatively recombine. The linear correl…

defectMaterials sciencePhotoluminescenceExcitonGeneral Physics and Astronomy02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesIonlaw.inventionlawluminescenceSpontaneous emissionQuantum confinementPhysical and Theoretical ChemistryElectron paramagnetic resonanceSilicon nanocrystalsilicon021001 nanoscience & nanotechnologyphotoluminescence efficiencysilicon nanoparticles luminescence0104 chemical sciencesAmorphous solidlaser ablationQuantum efficiencynanoparticles0210 nano-technologyLuminescence
researchProduct

Luminescence mechanisms of defective ZnO nanoparticles.

2016

ZnO nanoparticles (NPs) synthesized by pulsed laser ablation (PLAL) of a zinc plate in deionized water were investigated by time-resolved photoluminescence (PL) and complementary techniques (TEM, AFM, μRaman). HRTEM images show that PLAL produces crystalline ZnO NPs in wurtzite structure with a slightly distorted lattice parameter a. Consistently, optical spectra show the typical absorption edge of wurtzite ZnO (Eg = 3.38 eV) and the related excitonic PL peaked at 3.32 eV with a subnanosecond lifetime. ZnO NPs display a further PL peaking at 2.2 eV related to defects, which shows a power law decay kinetics. Thermal annealing in O2 and in a He atmosphere produces a reduction of the A1(LO) Ra…

Materials sciencePhotoluminescenceGeneral Physics and AstronomyNanotechnology02 engineering and technologyElectrontime resolved photoluminescence010402 general chemistry01 natural sciencessymbols.namesakeLattice constantPhysical and Theoretical ChemistryHigh-resolution transmission electron microscopyRamanFIS/03 - FISICA DELLA MATERIAWurtzite crystal structurebusiness.industrySettore FIS/01 - Fisica Sperimentale021001 nanoscience & nanotechnology0104 chemical sciencesAbsorption edgeZnO nanoparticles laser ablation Luminescence microscopy excitons defectssymbolsTEMZnOOptoelectronicsoxide nanoparticle0210 nano-technologybusinessRaman spectroscopyLuminescencePhysical chemistry chemical physics : PCCP
researchProduct

Prognostic role of endothelial dysfunction and carotid intima-media thickness in patients undergoing coronary stent implantation

2009

Aim. Impaired endothelial function and increased carotid intima-media thickness are key events in the atherosclerotic process and predict future cardiovascular events in subjects with and without coronary artery disease. The purpose of this study was to investigate whether the vasodilator response to increased flow in the brachial artery and the presence of carotid lesions may have a prognostic significance for in-stent restenosis in patients undergoing coronary angioplasty. Methods. The study population included 58 patients undergoing percutaneous coronary intervention (PCI) with stenting and at least 10 months of follow-up. All patients underwent ultrasound detection of brachial artery re…

Carotid Artery DiseasesMaleMiddle AgedPrognosisSettore MED/11 - Malattie Dell'Apparato CardiovascolareCoronary RestenosisProsthesis ImplantationCarotid ArteriesENDOTHELIAL DYSFUNCTIONHumansFemaleStentsEndothelium VascularProspective StudiesAngioplasty Balloon CoronaryTunica IntimaTunica Media
researchProduct

Controlling the oxidation processes of Zn nanoparticles produced by pulsed laser ablation in aqueous solution

2016

We used online UV-VIS optical absorption and photoluminescence spectra, acquired during and after pulsed laser ablation of a Zinc plate in aqueous solution, to investigate the effect of the laser repetition rate and liquid environment on the oxidation processes of the produced nanoparticles. A transient Zn/ZnO core-shell structure was revealed by the coexistence of an absorption peak around 5.0 eV due to Zn surface plasmon resonance and of an edge at 3.4 eV coming from wurtzite ZnO. The growth kinetics of ZnO at the various repetition rates, selectively probed by the excitonic emission at 3.3 eV, began immediately at the onset of laser ablation and was largely independent of the repetition …

PhotoluminescenceAqueous solutionMaterials scienceLaser ablationAnalytical chemistryGeneral Physics and AstronomyNanoparticlechemistry.chemical_element02 engineering and technologyZinc010402 general chemistry021001 nanoscience & nanotechnologyLaserPhotochemistry01 natural sciences0104 chemical scienceslaw.inventionchemistrylawZnO nanoparticles laser ablation oxidation Photoluminescence Surface plasmon resonance In situ optical spectra Defects excitons0210 nano-technologyAbsorption (electromagnetic radiation)Wurtzite crystal structureJournal of Applied Physics
researchProduct

Frequency dependence of the microwave surface resistance of MgB2 by coaxial cavity resonator

2014

Abstract We report on the microwave (mw) properties of a cylindrical MgB2 rod prepared by the reactive liquid Mg infiltration technology. The MgB2 rod, 94.3 mm long, is used as inner conductor of a coaxial cavity having a Cu tube as external conductor. By analyzing the resonance curves of the cavity in the different resonant modes and at different temperatures, we have determined the temperature dependence of the mw surface resistance, R s , of the MgB2 material, at fixed frequencies, and the frequency dependence of R s , at fixed temperatures. Our results show that the R s ( f ) curves follow a f n law, where n decreases on increasing the temperature, starting from n ≈ 2 , at T = 4.2 K , d…

Materials scienceMgB2 superconductorSuperconducting cavity resonatorSettore FIS/01 - Fisica SperimentaleMagnesium diborideEnergy Engineering and Power TechnologySuperconducting cavity resonator; Magnesium diboride; Microwave surface resistanceCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsConductorResonatorchemistry.chemical_compoundCoaxial cavity resonatorchemistryCoaxial cavityMicrowave surface resistanceExcited stateQuasiparticleMagnesium diborideElectrical and Electronic EngineeringAtomic physicsMicrowaveSheet resistancePhysica C: Superconductivity and its Applications
researchProduct

Self-limiting and complete oxidation of silicon nanostructures produced by laser ablation in water

2016

Oxidized Silicon nanomaterials produced by 1064 nm pulsed laser ablation in deionized water are investigated. High-resolution transmission electron microscopy coupled with energy dispersive X-ray spectroscopy allows to characterize the structural and chemical properties at a sub-nanometric scale. This analysis clarifies that laser ablation induces both self-limiting and complete oxidation processes which produce polycrystalline Si surrounded by a layer of SiO2 and amorphous fully oxidized SiO2, respectively. These nanostructures exhibit a composite luminescence spectrum which is investigated by time-resolved spectroscopy with a tunable laser excitation. The origin of the observed luminescen…

Silicon nanocrystal Silica nanoparticles laser ablation Time resolved phtoluminescence High resolution transmission electron microscopy Silicon Oxidation Quantum Confinment DefectsMaterials scienceLaser ablationPhotoluminescenceSiliconSettore FIS/01 - Fisica SperimentaleAnalytical chemistryGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAmorphous solidNanomaterialschemistry0210 nano-technologyLuminescenceSpectroscopyTunable laser
researchProduct

Microwave Response of Coaxial Cavities Made of Bulk Magnesium Diboride

2014

We report on the microwave (mw) properties of coaxial cavities built by using bulk MgB2 superconductor prepared by reactive liquid Mg infiltration technology. We have assembled a homogeneous cavity, by using an outer MgB2 cylinder and an inner MgB2 rod, and a hybrid cavity by using an outer copper cylinder and the same MgB2 rod as inner conductor. By the analysis of the resonance curves, in the different resonant modes, we have determined the microwave surface resistance, Rs, of the MgB2 materials as a function of the temperature and the frequency, in the absence of DC magnetic fields. At T = 4.2 K and f = 2.5 GHz, by a mw pulsed technique, we have determined the quality factor of the homog…

SuperconductivityMaterials scienceCondensed Matter - SuperconductivityMicrowave ResponseMicrowave Coaxial CavitieFOS: Physical sciencesCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsConductorMagnetic fieldSuperconductivity (cond-mat.supr-con)chemistry.chemical_compoundchemistryQ factorMagnesium DiborideMagnesium diborideElectrical and Electronic EngineeringCoaxialComposite materialSheet resistanceMicrowaveIEEE Transactions on Applied Superconductivity
researchProduct