6533b82afe1ef96bd128cc2d

RESEARCH PRODUCT

Enhancing the luminescence efficiency of silicon-nanocrystals by interaction with H+ions

Tiziana FioreP. CamardaLavinia VaccaroFrancesco AmatoFrancesco AmatoFabrizio MessinaMarco CannasMaria Li Vigni

subject

defectMaterials sciencePhotoluminescenceExcitonGeneral Physics and Astronomy02 engineering and technology010402 general chemistryPhotochemistry01 natural sciencesIonlaw.inventionlawluminescenceSpontaneous emissionQuantum confinementPhysical and Theoretical ChemistryElectron paramagnetic resonanceSilicon nanocrystalsilicon021001 nanoscience & nanotechnologyphotoluminescence efficiencysilicon nanoparticles luminescence0104 chemical sciencesAmorphous solidlaser ablationQuantum efficiencynanoparticles0210 nano-technologyLuminescence

description

The emission of silicon nanocrystals (Si-NCs), synthesized by pulsed laser ablation in water, was investigated on varying the pH of the solution. These samples emit μs decaying orange photoluminescence (PL) associated with radiative recombination of quantum-confined excitons. Time-resolved spectra reveal that both the PL intensity and the lifetime increase by a factor of ∼20 when the pH decreases from 10 to 1 thus indicating that the emission quantum efficiency increases by inhibiting nonradiative decay rates. Infrared (IR) absorption and electron paramagnetic resonance (EPR) experiments allow addressing the origin of defects on which the excitons nonradiatively recombine. The linear correlation between the PL and the growth of SiH groups demonstrates that H+ ions passivate the nonradiative defects that are located in the interlayer between the Si-NC core and the amorphous SiO2 shell.

10.1039/c8cp00616dhttp://hdl.handle.net/10447/288452