0000000000352194

AUTHOR

Marco Kirm

0000-0002-1833-6894

Exciton emission and defect formation in yttrium trifluoride

Two intrinsic emission bands at 220 and 280 nm have been detected in nominally pure YF3 powders at 10 K. Excitation spectra for both emissions have a sharp peak at 12 eV near the edge of interband transition. Observed emissions are assigned to the radiative decay of self-trapped excitons in YF3. The strong thermal quenching of intrinsic luminescence was observed at temperature above 120 K. It was supposed that non-radiative decay of self-trapped exciton at high temperatures lead to defect formation in YF3. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

research product

Progress in development of a new luminescence setup at the FinEstBeAMS beamline of the MAX IV laboratory

The main funding for the FinEstBeAMS beamline has been obtained from the European Union through the European Regional Development Fund (project “Estonian beamline to MAX-IV synchrotron”, granted to the University of Tartu) and from the Academy of Finland through the Finnish Research Infrastructure funding projects ( FIRI2010 , FIRI2013 , FIRI2014 ). The authors also acknowledge the funding contributions of the University of Oulu , University of Turku , Tampere University of Technology , the Estonian Research Council ( IUT 2-25 , IUT 2-26 , PRG-111 ), as well as the Estonian Centre of Excellence in Research “Advanced materials and high-technology devices for sustainable energetics, sensorics…

research product

Iron-related luminescence centers in ZnWO 4 :Fe

A systematic spectroscopic study of single ZnWO4 :Fe crystals with different iron concentrations has been performed under excitation by ultraviolet light, by synchrotron radiation or under photostimulation by near-infrared light. The luminescence of Fe3+-related centres has been studied. It is shown that iron centres of different types efficiently promote the formation of crystal defects at low temperatures. Electrons and holes can be trapped near Fe2+ or Fe3+ ions, which is further revealed in phosphorescence, thermostimulated or photostimulated luminescence. At room temperature the main effect of iron impurity is to reduce the light yield of a ZnWO4 scintillator.

research product

Performance and characterization of the FinEstBeAMS beamline at the MAX IV Laboratory

European Regional Development Fund (grant No. TK-141 HiTechDevices 2014-2020.4.01.15-0011 to University of Tartu; grant No. MAX-TEENUS 2014-2020.4.01.20-0278 to University of Tartu; grant No. Eesti Kiirekanal SLOFY11156T/1 to University of Tartu); Estonian Research Council (grant No. PRG-629 to University of Tartu); Jane & Aatos Erkko Foundation (grant No. SOFUS); Business Finland (grant No. 1464/31/2019); Academy of Finland (grant No. 319042; grant No. 326461; grant No. 326406; grant No. 320165); University of Oulu; University of Turku; Tampere University; University of Tartu.

research product