0000000000352518
AUTHOR
Jorge Martinez-bauset
Performance of frame transmissions and event-triggered sleeping in duty-cycled WSNs with error-prone wireless links
Abstract Two types of packet transmission schemes are prevalent in duty-cycled wireless sensor networks, i.e., single packet transmission and aggregated packet transmission which integrates multiple packets in one frame. While most existing models are developed based on an error-free channel assumption, this paper evaluates the performance of both transmission schemes under error-prone channel conditions. We develop a four-dimensional discrete-time Markov chain model to investigate the impact of channel impairments on the performance of frame transmissions. Together with tracking the number of packets in the queue, number of retransmissions and number of active nodes, the fourth dimension o…
Event-Triggered Sleeping for Synchronous DC MAC IN WSNs: Mechanism and DTMC Modeling
Overhearing and idle listening are two primary sources for unnecessary energy consumption in wireless sensor networks. Although introducing duty cycling in medium access control (MAC) reduces idle listening, it cannot avoid overhearing in a network with multiple contending nodes. In this paper, we propose an event-triggered sleeping (ETS) mechanism for synchronous duty-cycled (DC) MAC protocols in order to avoid overhearing when a node is not active. This ETS mechanism applies to any synchronous DC MAC protocols and makes them more energy efficient. Furthermore, we develop a two dimensional discrete time Markov chain model to evaluate the performance of the proposed ETS mechanism by integra…
Aggregated Packet Transmission in Duty-Cycled WSNs: Modeling and Performance Evaluation
[EN] Duty cycling (DC) is a popular technique for energy conservation in wireless sensor networks (WSNs) that allows nodes to wake up and sleep periodically. Typically, a single-packet transmission (SPT) occurs per cycle, leading to possibly long delay. With aggregated packet transmission (APT), nodes transmit a batch of packets in a single cycle. The potential benefits brought by an APT scheme include shorter delay, higher throughput, and higher energy efficiency. In the literature, different analytical models have been proposed to evaluate the performance of SPT schemes. However, no analytical models for the APT mode on synchronous DC medium access control (MAC) mechanisms exist. In this …
Cooperative or non-cooperative transmission in synchronous DC WSNs: A DTMC-based approach
Cooperative transmission (CT) enables balanced energy consumption among sensor nodes and mitigates the energy hole problem in wireless sensor networks (WSNs). In typical CT enabled medium access control (MAC) protocols, a source node decides to trigger CT or not based on a residual energy comparison between itself and its relay node. In this paper, we propose a receiver initiated CT MAC protocol, in which the receiving node makes the decision on initiating CT or not based on a tradeoff between performing CT and non-CT. In this way, nodes can avoid idle listening and achieve an extended lifetime. A discrete-time Markov chain (DTMC) model is developed to analyze the performance of CT associat…
Performance Analysis of Synchronous Duty-Cycled MAC Protocols
In this letter, we propose an analytical model to evaluate the performance of the S-MAC protocol. The proposed model improves the accuracy of previous models in two aspects. First, it incorporates the dependence among the nodes within a cluster by defining a DTMC that models the number of active nodes, whereas the previous models considered that nodes were mutually independent. Second, it proposes new methods for calculating packet delay and energy consumption. The analytical model is validated through discrete-event based simulations. Numerical results demonstrate that the proposed analytical model and methods yield accurate results under realistic assumptions
Joint Optimization of Detection Threshold and Resource Allocation in Infrastructure-based Multi-band Cognitive Radio Networks
[EN] Consider an infrastructure-based multi-band cognitive radio network (CRN) where secondary users (SUs) opportunistically access a set of sub-carriers when sensed as idle. The carrier sensing threshold which affects the access opportunities of SUs is conventionally regarded as static and treated independently from the resource allocation in the model. In this article, we study jointly the optimization of detection threshold and resource allocation with the goal of maximizing the total downlink capacity of SUs in such CRNs. The optimization problem is formulated considering three sets of variables, i.e., detection threshold, sub-carrier assignment and power allocation, with constraints on…
Efficient and accurate methodology for solving multiserver retrial systems
Proposed is a novel methodology for solving retrial systems which is based on the aggregation of levels of the Markov model beyond a given one. Its evaluation concludes that it is more accurate than previous approximations while requiring a low computational cost.